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ABSTRACT

In the potential-outcomes framework for causal inference, treatment effects are
defined as differences among outcomes that would be realized if different treatments
were applied to the same individual. In typical applications of the potential-outcomes
approach, the treatment is characterized as a binary variable observed without error.
We present a new model that accounts for error in measuring the treatment status.
Our model combines a latent-class regression for the treatment with linear regressions
for the potential outcomes. Maximum-likelihood estimates of model parameters are
computed by an EM algorithm. To estimate average treatment effects, we average over
covariates nonparametrically using expected estimating equations. As a motivating
example, we analyze the effects of naturalistic weight-control strategies on body-mass
index (BMI) among adolescent girls. Using data from a large national survey, we
identify latent classes of weight-control behavior and estimate effects of hypothetical
changes in behavior on BMI five years later, taking into account the complex sample

design. Supplemental documents and software are available online.
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1 INTRODUCTION

Causal inference requires care when treatments are not randomized. In the potential-
outcomes framework, each individual has an outcome under each treatment that could
have been received (Rubin, 1974a). Only one outcome is seen for any individual, so
the treatment effect, usually defined as a difference between potential outcomes, is
unobservable. Nevertheless, by making assumptions about the treatment mechanism
or the distribution of potential outcomes, it becomes possible to estimate an average
treatment effect {ATE). Overviews of this framework are provided by Gelman and
Meng (2004), Rosenbaum (2002), Rubin (2005), and Schafer and Kang (2008).

In most applications of the potential-outcomes model, the treatment has been
characterized as a binary variable that is always observed. For example, D’Agostino
(1998) examined the effects of post-term birth on outcomes in childhood; the status
(1=post-term, O=not) of each child was ascertained from birth records. Dehejia
and Wahba (1999) studied the effects of participation in a job-training program on
subsequent earnings, and participation (1=in program, O=not) was known.

However, there are many important research questions for which the treatment
is not well characterized by an observed variable. Consider the effect of dieting on
body weight among adolescent girls. Dieting is known to predict weight gain, possibly
through its association with binge eating (Stice et al., 1999; Neumark-Sztainer et al.,
2006). Dieting can be difficult to measure, however, because notions of what con-
stitutes dieting vary widely (Neumark-Sztamer and Story, 1998). Moreover, dieting
does happen in a vacuum; girls who diet may do so in conjuction with or in lieu of
other strategies such as exercising or using diet pills. The effect of a change from

non-dieting to dieting or vice-versa should be understood in the context of accompa-



nying changes in other behaviors. Popular methods for estimating average treatment
effects ignore uncertainty and bias that arise when the putative cause is measured
imperfectly. Failure to account for measurement error in the treatment is one reason
why the potential-outcomes framework is still met with resistance by some in the
social and behavioral sciences (Bollen, 2007).

Some have recently begun to address this problem. Lewbel (2007) developed a
correction for treatment misclassification by assuming that, given covariates, classifi-
cation errors are independent of the treatment received. Imai and Yamamoto (2008)
investigated the impact of differential ¢lassification error on nonparametric indentifi-
cation of treatment effects. In contrast, we propose a model that combines potential
outcomes with latent-class analysis {Goodman, 1974).

In Section 2, we define our model and present an EM algorithm for computing
maximum-likelihood (ML) estimates. Because our model conditions on covariates,
ATE’s do not appear as model parameters. In Section 3, we define estimating equa-
tions for average potential outcomes and replace unseen outcomes with model predic-
tions. This technicque, which has been called expected estimating equations (Wang et
al., 2008), enables us to average over covariates without specifying their distribution.
In Section 4, we extend the procedure to surveys with complex designs, showing how
to compute estimates and standard errors under the class of with-replacement designs.
In Section 5. we apply these methods to data from the National Longitudinal Study
of Adolecent Health (Udry, 2003) to estimate the effects of weight-control behaviors

on body-mass index.



2 THE MODEL

2.1 Modeling the Latent Treatment

Latent-class analysis (Goodman, 1974) explains relationships among a set of observed

categorical variables by supposing that they are conditionally independent given an

unobserved categorical variable. For each individual ¢ = 1,..., N, define a latent
treatment variable T, which takes possible values ¢ = 1,...,C. The treatment is
measured by manifest items U, = (U, ..., Uiy), where U, takes possible values
r=1....,7m. The realized value of U; is denoted by w; = (s, . .. Jupr ) We allow

an arbitrary subset of these items to be missing at random (Rubin, 1976), and we
partition the items as U, = (Ui obss Ui mis), where Ul s is observed and U 55 s
missing. Similarly, we partition w; as (2 ops, Wi mis). Ve assume that the U,’s are

conditionally independent given T;, with item-response probabilities
;O"rnf'|c = PI(Ui?n =T i Tl - C)-

Following Dayton and Macready (1988), we add covariates X, = (Xq, ..., X T
to the latent-class model through a baseline-category logistic regression (Agresti,
2002). The realized value of X is x; = (2, . .- ,Zip)T . Define v = Pr(T; = ¢{ X; =

x;), and assume that each 7, is bounded away from zero. We suppose that

exp (m,iTac) )
FY" = I ¥
© o Yoaiexp(zfaw)
where a,. = {@v1e, ..., ape)t, ¢ =1,..., C are coefficients to be estimated. Coeflicients

for one class, called the baseline or reference class, will be fixed at zero (cr. = 0).
Modet (1) is analogous to the models commonly used to estimate propensity

scores {Rosenbaum and Rubin, 1983). The vector v; = (%i1,..., %)’ is a multivari-



ate balancing score in the sense that individuals in different treatment groups with

identical ~,’s have identical distributions for X; (Imai and van Dyk, 2004).

2.2 Modeling the Potential Outcomes

Let Y, = (Yi(1),Yi{2),...,Y:(C))" denote numeric potential outcomes, where Y;(c)
is the outcome that would be realized if T; = ¢. The observed outcome for individual

iis ¥; s = Yi(T;), and its realized value is y; o, We suppose that
YHX@Z$1’ ~ N(}BTGE“E) (2)

where @ is a p x C matrix of coefficients to be estimated, and ¥ is a €' x € covari-
ance matrix. The cth column of B will be noted by 8. = (B, Jac,- -+, Fpe)’- The
diagonal elements of X are o2 for c = 1,..., C, and the off-diagonal elements are oo
Due to the pattern of missing values, the correlations r.» = .- /{c.0.) are strictly
inestimable (Rubin, 1974b), and we set them to zero. However, inferences about
ATE’s are insensitive to these correlations (Frangakis, Rubin and Zhou, 2002}, and
our estimates and standard errors do not change if different correlations are used.
To keep the notation simple, we have supposed that the same covariates used to
predict T; are also used to predict ¥;. Covariates in (1) and {2) should be drawn from
the same pool of potential confounders and prognostic variables {(Rubin and Thomas,
2000). However, different subsets of predictors, transformations and interactions may
appear in the two models, and thus the two versions of x; need not be identical. To
allow for this possibility in the sections below, individual covariates in models (1) and

(2) will be denoted by ILET) and 2%

if
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Figure 1. Causal model with latent treatment.
2.3 The Loglikelihood Function

By combining (1) with (2), we make three key assumptions. The first is unconfounded
treatment assignment: T; is independent of Y, given X; (Rosenbaum and Rubin,
1983). The second is unconfounded measurement: U, is independent of Y; given T;.
The third is local independence: Uy, ..., Uias are mutually independent given T;. A
graph of these relationships is shown in Figure 1. In this graph, an arrow from one
variable to another, as in A — B, indicates that the relationship between them is
parameterized as the conditional distribution of B given A.

In many applications, ¥; s will be measured later than U;, and an individual
may drop out before Y] 4, can be seen. If so, we will suppose that Y s is missing at
random, and we will still make use of the information in U, 4 to estimate the param-
eters of the treatment model. Denote the model parameters by 8 = (p, o, 8, ¥) and
the loglikelihood function given the observed data by I(8) = S 1;(8). 1f individual
i remains in the study long enough for Y; ons = ¥i06s to be seen, then

< ex iT c T H{uimer
o) = logZ{ P(m Oé) }{ H Hpﬂ;‘lﬁ? )}

5
=1 | Zo—1exp (m‘éTaC’) mEobs; r=1

-1/2 1 .
X (2%53) exp { sy (yi,obs - wiTﬁc)z} ) (3)

where obs, denotes the subset of {1,..., M} corresponding to the items that are



observed for individual ¢. If the individual drops out prior to realization of Y s,

then

C exp (z;7 o Tm
(e V)

T
corexp(xfay) E s 71

To streamline the notation, we rewrite (3} (4) as 4,(8) = log 3.5 | ¥ie Pic gie, Where
H H (tgn =) K
P te

mEobs; r=1

and

1 1 1 .
Gie = EXP { - § 108;(27}') - 5 10% Ug - 20_(% (’!ﬁ obs miTﬁc)z}
if Y} ops 18 seen; if ¥ g is unseen, define g;. = 1. Given the observed data, the posterior

probability that individual ¢ belongs to class Ti = ¢ is then

fY’l(‘ /}D?.C Chc
e = . (5)
S Yie P G

2.4 An EM Algorithm

To maximize 1(8), we apply an EM algorithm that augments the observed data with
assumed values for Ty, .., Ty. Define U4, to be the subset of {1,..., N} correspond-
ing to the individuals for whom U, is seen. Similarly, define Y as the subset of
{1,..., N} corresponding to the individuals for whom Y] .45 is seen. The augmented-
data loglikelihood can be written as the sum of three distinct terms,

N C
o) = > > 1T =c)logye

1=1 r=1

IS Z Ty = ¢) I{tin = 1) 10Z Prare

c=] m=1iCUm r=1

o
+ > > T, =¢) {—% log(2ma?) — 307 (}wbs = $1T/3n)2}-

e=1licV



If observed data and parameters are regarded as fixed, [* becomes a linear func-
tion of the indicators I(T; = ¢). Therefore, in the E-step of EM, we replace each
I{T; = ¢} by 1), where the latter is computed under the current estimate of 8. The

M-step separates into three steps corresponding to three terms in *(@). The term

Tan

o M
Z Z Z Z Tic I(uim = T.) iOg Pl
c=1m=1iclm r=1

is maximized at

fj o= Zz’EL{m The I(uim = T)
e T
E?‘,eum e

forr=1, ...7m m=1...,Mand ¢=1,...,C. The term

<
1 1 S
szn {‘“’ ”2" IOg(Zﬂ'Jz) - 2_0‘(‘2' (y'i,obs - :cii' Igc)z}

c=1{e)

-1
B, = (Z ni-cmimiT) chmiyﬁvobs) g
i€y ey
-1
Gy = (Z ’fh'c) Z”h’c (Viobs = wiTléc)Q

is maximized at

i€y €Y
fore=1,...,C.

The maximizer of the term involving the o's cannot in general be written in
closed form, bnt it may be computed by a Newton-Raphson procedure. Let « denote
the vector of coefficients .. for all classesc=1, ... ,C except the baseline class. The
function to be maximized is Qo) = 2N, 7 108 Vie, where the 7,.’s are given by (1)

and the n;.’s are regarded as fixed. One cycle of Newton-Raphson is
. -1
almew) = qld o [_er(a(oicﬂ))} an(a{(ozd))1

where ()’ (c) is the vector of first derivatives of Qq(ex) with respect to cr, and Qg{a)

is the matrix of second derivatives. The elements of @, (e} are

a 3 ()
"é?y Q(t = Z ("r}'i,c: — F\/i(:) :r'ij -

1=1




and the elements of Q% (ax) are

82 N ’
— - e _ USRS [ C C))
a@jcaaj’c’ (120: - ; Yic [I(( - C) %c’] Lij " Eyge
This algorithm has been implemented by the authors in combination of Fortran
95 and R. Procedures have been documented and bundled as an R package for Win-

dows. A beta release of this package, called LOCA Version 1 {built under R Version

2.10.1), has been made available online as a supplement to this article.

2.5 Standard Errors

EM provides the ML estimates, but it does not automatically give standard errors.

We estimate the covariance matrix for € by

N -1
Vo) = |- L)

i=1
where 17(0) denotes the Hessian of 1;{8). Expressions for loglikelihood derivatives are

provided in Section 1 of the online supplemental document.

2.6 Starting Values and Boundary Solutions

Depending on the starting values, EM may converge to any one of C! equivalent
modes in which the class labels 1,...,C have been permuted (Titterington, Smith
and Makov, 1985). EM may also converge to local minor modes. Users are advised to
repeat the estimation procedure from multiple starting vaiues for the p’s and compare
the loglikelihoods at the solutions to determine if minor modes are present. Starting
values for p's may be randomly generated from uniform distributions and normalized

to satisfy the sum-to-one constraints.




With latent-class models, it is common for some estimated p's to approach zero,
and boundary solutions make Hessian-based standard errors untenable. When this
happens, we apply a fHattening constant k to each set {pmee : 7 =1,... , 7w Which
adds information equivalent to k prior observations spread equally across the cate-
gories. A small positive value such as k = 1 is often sufficient to nudge the solution
away from the boundary. When k > 0, EM maximizes a function equal to the loglike-

lihood plus a penalty term which may be regarded as a Bayesian log-prior density.

2.7 Model Construction

It is helpful to contruct this model in stages. In the first stage, we ignore covariates
and outcomes and investigate latent-class models for U;. Models with different values
for C' should not be compared by standard likelihood ratio tests (Titterington, Smith
and Makov, 1985}, but. statistics such as AIC and BIC may provide some guidance.

In the second stage, we incorporate a rich set confounders and prognostic vari-
ables into the model for T,. Overfitting a propensity model can make estimates of
ATE’s more efficient {Lunceford and Davidian, 2004). To avoid post-treatment se-
lection bias {Robins and Greenland, 1992), covariates influenced by T; should not be
used. After fitting this model, we generate a single random imputation of T, from
the estimated posterior probabilities (5) (Bandeen-Roche et al., 1997). Distributions
of estimated propensities -y, may then be compared across the imputed treatment
groups to assess overlap and imbalance (Gelman and Hill, 2007).

At the third stage, we incorporate predictors for ;. To mitigate bias due to
misspecification of the outcomes model, we have found it helpful to include func-

tions of estimated logit-propensities saved from Stage 2 as predictors for Y, such as



piecewise-constant terms or a spline bases (Kang and Schafer, 2007).

3 AVERAGE TREATMENT EFFECTS

3.1 Defining the Effects

None of the parameters in & are average treatment effects. The coethicients 3 de-
scribe the means of each potential outcome given the covariates, but ATE’s are
contrasts among the means of the potential outcomes averaged over the covariates.
Let p(c) = E(Vi(c)) denote the marginal mean of Y;{c} in the population. The
average effect of treatment T, = ¢ versus T, = ¢ is plc) — p(d). Similarly, let
wule|d) = E(Yi(c){1; = d) denote the mean of ¥;(c) among individuals receiving
T, = d. The average effect of treatment T, = ¢ versus T; = ¢ among those with
T, =dis plc|d) — pld | d). In general, u(c) — p{c) and p(c|d) — p(' | d) are not the
same, because in a nonrandomized study the treatment groups are not drawn from

the same population.

3.2 Expected Estimating Functions

We now describe a method for estimating = E{(Y;) and jqy = E(Y; | T; = d} that
does not require a model for X; but averages over it nonparametrically.
If Yi{1},....Y:(C) and T; were seen for every individual, we could consistently

estimate p{c) and p{c|d) with minimal assumptions by

L& YL T = d)Yi(e)
W;K(() and SN I(T=d)




These may be regarded as the solutions to the estimating equations

N

> (Yile) — ule)) =0 (6)

im]

and

N

;f(ﬂ =d) (Yi(c) — plcd)) = 0. (7)
Because Y;(¢) and T} are unknown, we replace the expressions on the left-hand sides of
(6)—(7) by their expected values given the observed data under the model from Section
2. Replacing score functions by their conditional expectations has been described by
Wang et al. (2008). In a parametric model, a solution to expected estimating equa-
tions is an ML estimate (Wang and Pepe, 2000}. Our method is not ML, because we
have not specified a distribution for X;. Nevertheless, the estimates will be consistent
and asymptotically normal if the model from Section 2 is correct.

To obtain the expected estimating equations, we replace Y;(¢) in (6), and I(T; =

d) and I{T}; = d} Y;(¢) in (7), by their expected values given X; = @;, Ui ops = Wi,obs;

and Y; 5. = i s if the latter is seen. The expected value of Y;(¢) given that T, = d is

Yi,obs it ¥ ops 1s seen and ¢ = d,
~ Ir T g i R
gileld) = § @B, + (~—-62) (y¢,055 = a:iTﬁd) if Y, s is seen and ¢ # d, and
o
d
x; T3, if Y ops 1s unseen.

The expectations of ¥;(c), I(T; = d), and I{T, = d) Y;(c) given the observed data are
then 35, miw Bilc| ), nia and n§i(c| d), respectively. Plugging these expressions

into (6}-(7) and solving the equations gives

1 N C

pe) = 5 22 22 meriileld)

=] ¢'=1

anc

. Z'fN: Mg Yilel d
jlcid) = Tl Bleld)
i=1Thd

LD



3.3 Standard Errors

A covariance matrix for g = {3(1),..., #{C))" may be estimated as follows. Define
w; = (wi(1),...,wi{(C))7T, where
C
wile) = X me Gilel ) — ple)

o'=1

is the contribution of individual 7 to the expected estimating function for u(c). Define

, d
S. = 1(6) = 55 1i(6)

as the vector of derivatives of the loglikelihood defined in Section 2. The estimate ¢ =
(EA?Ti f7)7 can be regarded as the solution to stacked estimating equations %, 9, =
0, where ¢, = (8,7, w!)T. Under mild regularity conditions, we have VN ((,Ab - ) —
N(0,T), where I = A"'BA T, A= —E(dv,/0¢") and B = E(yp4p]) (Newey and

McFadden, 1994). An estimated covariance matrix for (35 is

o - (S00) (Seer) (22%)

i=1 i=1 i=1
where all functions on the right-hand side of (8) are evaluated at ¢ = ¢. The matrix

dp, /0" has the form

The covariance matrix for fiy, = (4{1}d),... , (Cld))T may be estimated in
SR . T 7 . . .
a similar fashion. Regard ¢ = (0 .,u%;))T as the solution to stacked estimating

equafions YN, =0, where ¢ = (ST, wﬂd))T, and w;(qy is the vector with elements

wi{e|d) = mq [9:lc]d) — plc|d)]



for ¢ = 1....,C. The estimated covariance mafrix is given by (8), with

'@y | o
p; _
ach awi(d) 8&)1(61)
a0" | Ouly,

Expressions for the derivatives of w; and w4 are provided in Section 2 of the

the online supplemental document.

4 COMPLEX SURVEY DESIGNS

4.1 Survey weights

Data from surveys with complex sampling designs are usually accompanied by weights.
A weight w; may be regarded as the number of population individuals represented
by individual i. If individuals were sampled with unequal probabilities (i.e., if some
groups were oversampled), modeling procedures that ignore the weights can lead to
biased estimates of population parameters (Lohr, 1999).

When parametric models are applied to survey data, a standard practice is to
compute psendo-maximum likelihood (PML) estimates {Skinner, 1989). PML maxi-
mizes the likelikood for a pseudo-population in which individual ¢ has been “cloned”
w; times. The pseudo-loglikelihood for the model of Section 2 is (7(8) = S wd (6),
and this function can be maximized with trivial changes to the EM algorithm of Sec-

tion 2.4. The E-step is unchanged. The M-steps for p, 8 and X become

- Zieum Wi e [ (Uim = 7")
Pmrie = )
D ictdy, Wi Tic

-1
a0 , T o
8. = (Z Wi e Ty 4 ) (Z (bi”u’wiyé.oba) ;

ey ey



-1
5l = (Z win’in) > witlic (Yiobs — " 3.)%,

ey ey

and the M-step for « is performed by Newton-Raphson with derivatives

o ] N -
8—053,; Qa EZI w; (7?1(: - ’}/,;C) x5
M___z_....Qn = - iwi%c [I(Cw(_:’) _ /Yic,] L'(“) l(af)
a(kjcaa:’jlcr — . e 4 i (

The estimated average potential outcomes from Section 3.2 become

a(c) = ii\il Wy Zf:{?l Nier 4i (€| &) \
21 Wi ‘
fle|d) = > ‘wNimd 7! d} .
2= Willid

4.2 Modeling a Subpopulation

Suppose we want to model a subset of the population {e.g., males 12-18 years old}.
With a simple random sample, we may discard individuals who do not fit this de-
scription. With a complex design this may not be appropriate, because the design
may not scale down to the subpopulation. To model a subpopulation, define h, equal
to 1 if individual ¢ is in the subpopulation and 0 otherwise, and in each formula in

Section 4.1, replace w; by hyw;.

4.3 With-Replacement Designs

Many popular designs can be viewed, at least approximately, as special cases of
the following class. The population is divided into S5 = 1 sampling strata indexed
by s = 1,...,58 Within stratum s, primary clusters ¢ = 1,...,C, are selected

with replacement. Within primary cluster ¢ in stratum s, individuals ¢ = 1,..., N



are sampled by any method, possibly in multiple stages, so that the total sample
size Is N = fol E((:l N,,. This is known as the “with replacement” {(WR) class,
and many popular software packages for analyzing survey data assume it by default.
Design information is conveyed by three user-supplied variables: the individual’s
survey weight, the cluster identifier (if n., > 1), and the stratum identifier (if § > 1).
In most surveys, sampling is done without replacement (WOR) to insure that no
cluster or individual is selected twice. When sampling is WOR, standard errors

computed under a WR assumption tend to be conservative (Wolter, 2007).

4.4 Standard Errors for WR Designs

With WR designs, if is convenient to index sampled individuals by the three subscripts
i, ¢ and s. For example, the survey weight w; becomes w;qs.
Variance estimates for WR designs may be obtained as follows. Define the

pseudo-score vector for individual 7 in cluster ¢ and stratum s by

a
Sics 8) = h’t(‘é ics 451’&5‘ ) 3
L8) = B 5 1ial0)

where [;.,(@) is the individual’s contribution to the loglikelihood function. Let wi.,
denote the vector of expected estimating functions for g = E(Y;), which is defined
as in Section 3.3 except that each function is now multiplied by A wiq. Stacking the
estimating functions as ¥, = (S5, wk, )7, the joint estimate ) = (@T, 117 can be
regarded as the solution to 3, ,; %¥,,(8) = 0. The estimated covariance matrix for ¢

comes from a modified sandwich formula,

8,0,8 &, 5,6,

Vo) - (m > w) (5 () (- )) (w > ¢) ,



where 1, = Y%, is the total within cluster ¢ in stratum s, ¥, = C7* 5 4

is the average of the cluster totals within stratum s (Wolter, 2007). An analogous

procedure gives variance estimates for p = E(Y, | T; = d).

5 ANALYZING THE EFFECTS OF WEIGHT-

CONTROL BEHAVIORS

5.1 Motivation

Dieting. defined as a voluntary and temporary reduction of caloric intake, has been
shown to predict weight gain in cross-sectional and longitudinal studies (Field et al.,
2003; Stice et al., 1999, 2005; Neumark-Sztainer et al., 2006). It also predicts anxiety
and depression (Kovacs, Obrosky and Sherrill, 2003), decreased cognitive performance
{(Green and Rogers, 1998), eating disorders (Patton et al., 1999) and emotional distress
{Neumark-Sztainer and Hannan, 2000). Yet the effects of dieting are difficult to
ascertain for the following reasons. First, dieting is self-selected. Dieters and non-
dieters differ in ways that may confound relationships between dieting and outcomes.
Second, dieting is self-defined. Behaviors identified as dieting vary across individuals,
peers groups and cultural contexts. Third, dieting may supplement or supplant other
weight-control strategies (e.g., exercise), making it difficult to separate the effects of
dieting {rom those of concurrent behaviors.

Using data from a large survey of adolescents from the United States, we iden-
tified patterns of weight-control behavior and investigated effects of these behaviors

on body weight five years later.



5.2 Data

The National Longitudinal Study of Adolescent Health (Add Health) (Udry, 2003)
is a nationally representative study of youth risk behaviors. Researchers sampled
132 high schools within strata defined by region, urbanieity, school size, school type
and percent minority enrollment. Within each school, a core sample of students
was selected with probabilities depending on school size and student characteristics.
Students were interviewed in grades 7-12 (Wave [, 1994-95) with reinterviews one
vear later (Wave I1, 1996} and at age 18-26 (Wave 111, 2001-02). Items at each wave
covered a broad range of health-related attitudes and behaviors.

The treatments in this analysis are weight-control strategies inferred from Wave
IL. The outcome is log body-mass index (LOGBMI) at Wave I1I based on self-reported
height and weight. Sixty-one baseline measures thought to be related to the treat-
ments or the outcome were considered as covariates. To reduce the possibility that we
might inadvertently adjust for intermediate outcomes along the causal pathway, all
covariates were drawn from Wave 1. Two key covariates were LOGBMI at baseline,
which is strongly related to the outcome, and self-perceived weight relative to peers,
which is strongly predictive of the treatments. Our analyses are based on N = 6,679

girls interviewed at Wave 1T who had nonmissing values for these two covariates.

5.3 Treatment Classes

Weight-control strategies were measured by eight items. The first item, TRYWEIGHT,
asked whether the girl was trying to 1=lose weight, 2=gain weight, 3=stay the same
or 4=not trying to do anything about weight. Remaining items (DIETED, EXER-

CISED. VOMITED, DIETPILLS, LAXATIVES, OTHER, NONE) asked what she



Table 1: Fit statistics for latent-class models of naturalistic weight-control strategies:
number of parameters, loglikelihood, AIC, and BIC.

Classes Params —2Loglik  AIC BIC

=1 17 86,864 86,898 87,013
C=2 35 38,717 38,787 39,025
C=3 53 32910 33,016 33,377
=4 71 31,684 31,826 32,309
=5 89 31,195 31,373 31,979
C=8 107 31,023 31,237 31,966

did to lose or maintain weight during the last seven days. Those items were skipped
if TRYWEIGHT=2 or 4, so we coded them as 1=yes, 2=no, 3=legitimate skip.

Junoring the covariates, we examined latent-class models with 1-6 classes. We did
not account for the sampling design at this stage, because statistics traditionally used
to compare latent-class models are not defined for PML. Summaries of fit (number of
parameters, loglikelihood, AIC and BIC) are reported in Table 1. The fit appears to
improve dramatically as each new class is added, which is typical behavior for a large
sample. We fit each model 100 times using different random starting values. For the
models with 1-3 classes, all 100 runs converged to equivalent solutions. With four
classes, a minor mode appeared in one solution. With five and six classes, the majority
of solutions corresponded to numerous minor modes. Comparing major modes for
the four- and five-class models, the class prevalences and item-response probabilities
Jooked similar; the only major difference was that, in the five-class model, a small
class (estimated at 3.5% of the population) emerged consisting of girls who tended to
respond OTHER=1. Because this class was rare and difficult to interpret, we decided
to proceed using a model with four classes.

We refit the four-class model by PML using the Add Health cluster and stratum



Table 2: Estimated prevalences and item-response probabilities for Classes 1-3 in the
four-class model.

Class 1 Class 2 Class 3

Prevalence 0.286 0.324 0.191
TRYWEIGHT=1 0.903 0.484 0.182
DIETED=1 0.723 0.015 0.000
EXERCISED=1 0.704 1.000 0.000
VOMITED=1 0.022 0.000 0.000
DIETPILLS=1 0.059 0.000 0.000
LAXATIVES=1 0.014 0.600 0.000
OTHER=1 0.114 0.016 0.000
NONE=:1 0.000 0.600 1.000

identifiers and Wave Il sampling weights. Parameter estimates changed little, and
standard errors for the class prevalences became 30-80% larger. The members of
Class 4, estimated to be 19.9% of the population, answered TRYWEIGHT=2 or
4 and skipped the remaining items with probabilify 1; this class represents girls
who were not trying to lose or maintain weight. The remaining classes described
girls who were applying various weight-control strategies. Estimated prevalences and
itern-response probabilities for Classes 1-3 are reported in Table 2. Class 1 (28.6%)
containg girls who were likely to be trying to lose weight by one or more strategies,
but those strafegies varied. Essentially all girls who dieted are in this class, but many
of them were also exercising or doing other things. Class 2 (32.4%) was trying to lose
or maintain weight through exercise alone. Class 3 (19.1%) consists of girls who said
were trying to lose weight or stay the same (mostly the latter) but were not doing
anything (NONE=1). Based on these interpretations, we will refer to Classes 1-3 as

“Try Something,” “Exercise Only,” and “Do Nothing,” respectively.



5.4 Predicting the Treatments

Based on a review of the dieting literature, we created a pool of 61 baseline measures
for predicting the treatment. Known correlates of dieting include race, ethnicity,
body weight, body image, pubertal timing, female physical development, self-esteem,
academic performance, parental and peer relationships, disinhibited eating, external-
izing behaviors, emotional distress and use of licit and illicit substances. Variables
from Add Health Wave I related to these were included in the pool. We also included
variables that seemed useful for predicting subsequent BMI (e.g., parental obesity
and diabetes). Occasional missing values in the baseline variables (usually 2% or
less) were handled by mean imputation, by assignment to the modal class (for highly
skewed binary variables) or by creating dummy indicators for missingness. Such ad
hoc missing-data procedures are not generally recommended for regression analyses
(Little and Rubin, 2002}, but it is reasonable to use them in propensity-score mod-
eling, because the purpose of a propensity model is prediction, not interpretation
(D’Agostino and Rubin 2000), and when the ATE’s are estimated, these variables are
averaged out. Descriptions of these variables, and the Add Health items from which
they were derived, are given in Section 3 of the online suppiement.

Using Class 4 as the reference group, we regressed the latent treatment on each
covariate, one at a time. Nearly all were signilicantly related o the treatment as
jndged by likelihood-ratio tests, so we decided to use all of them in the treatment
model. Fstimated prevalances and item-response probabilities changed slightly when
the covariates were introduced, but they exhibited the same pattern as in Table 2.
After fitting this model, we saved the estimated linear predictors ;T &, and posterior

probabilities 7. We drew a single random imputation of T from the 7};.'s to compare
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Figure 2: Boxplots of estimated log-odds by imputed treatment class.

propensity distributions across classes. Because we are interested in comparisons
among Classes 1-3, we created boxplots of log(%i./%v) = ;" &, — &;" & for each
pair ¢ and ¢ in Classes 1-3 (Figure 2). These distributions overlap well, but some
of the comparisons are quite unbalanced. For example, in Figure 2 (a), the lower
quartile for Class 1 coincides with the upper quartile for Class 2. As imbalance
increases, causal inferences become increasingly sensitive to misspecification of the
model for the outcomes. This bias can be mitigated by enlarging the model for Y, to

allow outcomes to vary with propensities in a flexible way (Little and An, 2004).

5.5 Predicting the Potential Outcomes

All 61 covariates from the treatment model were used to predict Y,. We also included
a linear spline basis for each of the three logits displayed in Figure 2 with knots at the
sample quintiles. Similar strategies were recommended by Little and An (2004) and
Kang and Schafer {2007) to protect against biases that may arise from a misspecified
model. Because each logit is an exact linear combination of the 61 covariates, the

logits themselves were omitted from the spline bases to aveid redundancy.



Table 3: Estimated means of LOGBMI under Treatments 1, 2, and 3 for the full
population and within each treatment class, with standard errors

Domain Treatment Est. SE
Full Population Try Something 3.231  0.008
Fxercise Only  3.171 0.014
Do Nothing 3.202  0.008

Try Something  Try Something 3.330  0.009
Exercise Only  3.232  0.028
Do Nothing 3.302  0.013

Iixercise Only Try Something  3.179  0.013
Exercise Only 3,134 0.009
Do Nothing 3.147  0.011

Do Nothing Try Something 3.193 0.010
Exercise Only 3.151  0.012
Do Nothing 3.164  0.009

5.6 Results

The PML estimation algorithm for the combined treatment and outcomes model
converged in 109 iterations. The procedure took approximately 400 seconds on a 2.60
GHz dual-CPU Windows computer. Parameter estimates and standard errors are
provided in Section 4 of the online supplement.

The estimated marginal means p{c} = E(Y;(c}) and p(c|d) = E(Y, = c|T; = d)
for treatment classes 1, 2 and 3 are displayed in Table 3. The estimated mean of
LOGBMI is highest under Treatment 1 (Try Something), followed by Treatment 3
(Do Nothing), followed by Treatment 2 {Exercise). This same pattern appears in the
full poputation and in the subpopulations defined by the treatments.

Estimated average treatment effects 100{u(c) — p{c")) and 100{u(c|d) — p(c' | d))
are shown in Table 4. Because BMI is expressed on the log scale, these effects may

be interpreted as approximate percent changes in body weight. The largest effect



Table 4: Estimated (average treatment effects x100) comparing Treatments 1, 2, and

3 for the full population and within each treatment class, with standard errors and

p-valiues
Domain Comparison Est.  SE P
Full Population  Exercise Only vs. Try Something —5.98 1.50 .000
Do Nothing vs. Try Something 287 082 .001
Do Nothing vs. Exercise 311  1.54 044
Try Something  Exercise Only vs. Try Semething —-9.73  2.82  .000
Do Nothing vs. Try Something —2.74 1.08 .012
Do Nothing vs. Exercise 7.60 298 019
Exercise Only Exercise Only vs. Try Something —4.44 1.25 .000
Do Nothing vs. Try Something ~3.18 L18  .007
Do Nothing vs. Exercise 1.26  1.03 219
Tro Nothing Exercise Only vs. Try Something --4.15 135 .002
Do Nothing vs. Try Something —2.93 087 .00l
Do Nothing vs. Exercise 1.22  1.25 329

(—9.73) is the comparison of Exercise Only versus Try Something for girls in the Try
Something class. It suggests that, if the girls who engaged in Try-Something behavior
had instead chosen to Exercise Only, their body weight after five years would have
been about 10% lower than it was. If these same girls had chosen to Do Nothing,
their weight would have been about 3% lower than it was. Within each treatment
group, Try Something produces significant increases in weight relative to Do Nothing
and Exercise Only. Among girls who chose to Exercise Only, their weight is estimated
to be about 4% lower than if they had chosen to Try Something, and about 3% lower
than if they had chosen to Do Nothing. In the Do Nothing group, the decision to Do
Nothing rather than Try Something appears to be beneficial, but if they had instead

chosen to Exercise Only, there would have been little change.



6 DISCUSSION

Because most girls who dieted belonged to the Try-Something class, our results seem
consistent with previous findings that dieting leads to weight gain. However, these
data do not allow us to estimate a pure effect of dieting, because dieting often ap-
pears alongside other weight-control strategies. Observational studies of naturalistic
behaviors do not always produce neat treatment groups for testing a priori causal
hypotheses. The hypotheses testable from these data are comparisons among exercis-
ing, doing nothing, and a state in which girls attempt to lose weight by various means
but perhaps without firm commitment. We speculate that this Try-Something state
may act as a mental substitute for strategies that would be effective (e.g., sustained
restrained eating or consistent exercise). In fact, this state appears to be decidedly
worse than doing nothing. Our results suggest that behavioral interventions designed
to move and keep girls out of this Try~-Something state might be effective.

Although we have adjusted for many baseline covariates, the possibility remains
that the effects in Table 4 are distorted by unmeasured confounders. Methods for
assessing sensitivity to unmeasured confounders (Rosenbaum, 2002) in this latent-
treatment setting are an important topic for future research.

The model developed in Section 2 may be extended in various ways. The linear
regressions for Y; could be replaced by logistic or loglinear models for binary outcomes
or frequencies. The estimating functions given in Section 3 for estimating F(Y;) and
E(Y;|T, = ¢) could be replaced by estimating functions for parameters of E(Y; | Z;)
and E(Y 1T, = ¢, Z,), where Z, is a vector of covariates that moderate the treatment
effects. This would allow us to fit marginal structural models (Robins, Hernan and

Brumback, 2000) in situations where the treatment is a latent class.



SUPPLEMENTAL MATERIALS

Document: Supplement to “Estimating Average Causal Effects When the Putative

Cause is a Latent Class” (PDF).

Software: LCCA: Latent-Class Causal Analysis, software package for Windows R

(ZIP archive).

Document: LCCA Package for R, Version 1 (Beta) (PDF file)
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