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This package performs latent-class causal analysis (LCCA) as described by Kang and Schafer
(submitted). LCCA estimates population average treatent e�ects under an extended version
of the Rubin causal model, where the \treatment" is a polytomous latent variable measured
by items assumed to be independent within classes. This package also has functions for
conventional latent-class analysis with and without covariates. The modeling functions will
accept data from surveys collected under the general class of with-replacement (WR) de-
signs, which encompasses simple random samples, strati�ed samples, cluster samples and
multistage designs with equal or unequal probabilities of selection at any stage. Pseudo-
maximum likelihood (PML) estimates are computed by an EM algorithm, and standard errors
are obtained by a Taylor linearization (sandwich) formula.
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1 Overview

1.1 Description

This R package provides functions for latent-class analysis and latent-class causal analysis.

Latent-class analysis (LCA) describes relationships among a set of categorical variables
by assuming that they are conditionally independent given an unobserved categorical variable.
The LCA model is often attributed to Lazarsfeld and Henry (1968), and procedures for
maximum-likelihood (ML) estimation were described by Goodman (1974) and Clogg and
Goodman (1984). Properties and applications of LCA have been described by many authors;
a good example is the recent textbook by Collins and Lanza (2010). LCA was previously
implemented in another R package called poLCA (Linzer & Lewis, 2007). Our implementation
of LCA di�ers from poLCA's in the following respects.

� Most computations are performed in native Fortran.

� Standard errors for parameters are computed by several di�erent methods.

� The functions for latent-class modeling support multi-group analyses, which are useful
for examining questions of measurement invariance.

� The modeling functions accept survey weights, computing pseudo-maximum likelihood
(PML) estimates for model parameters.

� The modeling functions accept identi�ers for sampling strata and primary clusters un-
der the general class of with-replacement (WR) survey designs. Standard errors are
computed using a linearization (sandwich) method.

Latent-class causal analysis (LCCA) is a new procedure for estimating average treat-
ment e�ects from observational (non-randomized) studies in which the treatment variable is
imperfectly measured (Kang & Schafer, submitted). LCCA combines aspects of latent-class
analysis with Rubin's causal model (Rubin, 1974; 2005).

The LCCA package includes three major modeling functions:

lca: Fit a conventional latent-class model.

lcacov: Fit a latent-class model with covariates.

lcca: Fit a latent-class causal model.

Results from these functions are returned as objects of class "lca", "lcacov" and "lcca",
respectively. These objects contain parameter estimates, standard errors and �t statistics.
Nicely formatted printed summaries can be displayed by calling the generic method summary.
Other important functions include:
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permute.class: Reorder the latent classes in a result from lca, lcacov or lcca.

compare.fit: Compare the �t of nested models from lca, lcacov or lcca.

Three functions are provided for data generation, which are useful for performing simulation
studies.

lca.datasim: Simulate random data from a latent-class model.

lcacov.datasim: Simulate random data from a latent-class model with covariates.

lcca.datasim: Simulate random data from a latent-class causal model.

The LCCA package also includes four example datasets:

hivtest: diagnostic accuracy of tests for HIV infection

abortion: attitudes on legalized abortion from the 2006 General Social Survey

NHsmoking: recent cigarette use from NHANES 2005{2006

diet: simulated study of the e�ects of dieting on emotional distress

1.2 Limitations and use

A limitation of the LCCA package is that it currently works only with R for Windows. This
limitation arises because the native computational routines are written in Fortran 95. Unfor-
tunately, the tools for building R packages in the standard way still require Fortran source
code to be written in old-fashioned Fortran 77. Until the R package-building machinery can
accommodate newer features of Fortran, we cannot submit this software to CRAN as a
platform-independent R package. Rather, we are distributing it ourselves as a precompiled
binary package for Windows versions of R.

This software is provided in good faith to researchers free of charge and may be used by
anyone if proper credit is given. It is distributed in the hope that it will be useful, but without
any warranty, without even the implied warranty of merchantability or �tness for a particular
purpose. The recommended citation is:

Schafer, J.L. and Kang, J. (2010) LCCA: Latent-class causal analysis. Software
package for R. University Park, PA: Department of Statistics, The Pennsylvania
State University.
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1.3 Installing the package

The LCCA package is distributed in precompiled form for Windows as a single compressed
archive (.zip �le). For version 1.0.0, the name of the �le is lcca_1.0.0.zip. The easiest
way to install the package is to begin a Windows R session and select \Install package(s)
from local zip �les. . . " from the \Packages" menu. A �le selection box will appear from
which you can browse your computer. When you select the .zip �le, the package is installed
automatically.

A note to users of Windows Vista. If you are running Windows Vista, you may encounter
di�culty when trying to install LCCA for the following reason. R itself has probably been
installed in a subdirectory of C:\Program Files or C:\Program Files (x86). By default,
packages are installed in subdirectory library of the R directory. As a Vista user, you may
not have su�cient privileges to create new subdirectories and install �les there. If you have
trouble installing the package under Vista, try running R with Administrator privileges. To
do this, right-click an R shortcut and select \Run as administrator". If you start R in this
way, you should be able to install packages without any trouble. Once the package has been
installed, you do not need Administrator privileges to use it. So you may quit that R session
and start another one in the usual way, not running as Administrator.

1.4 Loading the package

Before you can use any of LCCA's functions or datasets, you will have to load it into your
current session by issuing the command

> library(lcca)

from the R console. Alternatively, you can go to the \Packages" menu and select \Load
packages. . . ." A small window will appear that lists in alphabetical order all of the packages
that have been installed on your computer. Select lcca from that list, and the package will
load.

1.5 Documentation and data examples

Once the library has been loaded, you can view its documentation �les in the usual way, as
in the following examples:

> help(lcacov) # documentation for the function lcacov
> ?lcacov # same thing as above
> help("lcca-package") # overview of the package

If you issue the command
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Figure 1: Standard latent-class analysis.

> data(package="lcca")

then a list of the datasets distributed with LCCA will appear. Each dataset has its own
documentation; for example,

> help(hivtest)

will display the page for the hivtest dataset. To gain access to these datasets, use the data
function with the name of the dataset as its argument. For example, if you type

> data(hivtest)

then a copy of the hivtest dataset will be loaded into your current workspace as a data
frame.

2 Latent class analysis (LCA)

2.1 Notation and assumptions

Variables. Let Y i = (Yi i ; : : : ; YiM) denote a vector of manifest categorical items for individual
i . We will assume that Yim takes possible values 1; : : : ; rm, which are called the response
categories. The realized value for Y i is denoted by y i = (yi1; : : : ; yiM). In the standard C-class
model, we assume that Yi1; : : : ; YiM are conditionally independent given a latent categorical
variable Li , which takes possible values (classes) 1; : : : ; C. A graphical representation of the
LCA model is shown in Figure 1.

Measurement parameters. Our LCA implementation allows for multigroup analyses in which
individuals are classi�ed into groups g = 1; : : : ; G across which the measurement parameters
and/or class-membership probabilities may vary (Clogg & Goodman, 1984). Let gi denote
the group to which individual i belongs. The measurement parameters are

�mr jcg = Pr(Yim = r jLi = c; gi = g):
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These parameters satisfy the obvious constraints
∑rm
r=1 �mr jcg = 1 for each combination of

m = 1; : : : ;M, c = 1; : : : ; C and g = 1; : : : ; G. If the �'s are assumed to be equal across
groups, a condition known as measurement invariance, then the number of free measurement
parameters is C

∑M
m=1(rm � 1). If the �'s are not assumed to be equal across groups, then

the number of free measurement parameters is GC
∑M
m=1(rm � 1).

Class prevalences. The prevalences or class-membership probabilities are

cjg = Pr(Li = c j gi = g):

If the 's are assumed to be equal across groups, then the number of free -parameters is
(C � 1). If we do not assume equality across groups, it becomes G(C � 1).

Distributions. The model represented by Figure 1 can be written as

Pr(Y i = y i ; Li = c j gi = g) = c jg
M∏

m=1

rm∏

r=1
�I(yim=r)
mr jcg ;

or as

Pr(Y i = y i ; Li j gi = g) =
C∏

c=1
I(Li=c)
cjg

C∏

c=1

M∏

m=1

rm∏

r=1
�I(Li=c) I(yim=r)
mr jcg :

Marginalizing over the latent variable gives

Pr(Y i = y i j gi = g) =
C∑

c=1
cjg

M∏

m=1

rm∏

r=1
�I(yim=r)
mr jcg :

Missing items. Suppose that some of the items in Y i are missing. Let Y i ;obs denote the
observed part of Y i , and let y i ;obs denote its realized value. The marginal distribution of
Y i ;obs can be written as

Pr(Y i ;obs = y i ;obs j gi = g) =
C∑

c=1
cjg

∏

m2obs i

rm∏

r=1
�I(yim=r)
mr jcg ;

where obs i denotes the subset of f1; : : : ;Mg corresponding to the items that are observed
for individual i (Little & Rubin, 2002).

Frequencies for aggregated data. If multiple individuals in the sample have identical values
for Y i ;obs , these individuals may be aggregated into a single case (line) in the data �le, with
with a frequency fi indicating how many individuals are represented by that case. Then the
total sample size is not n but

∑n
i=1 fi . For non-aggregated data, de�ne fi = 1 for i = 1; : : : ; n.

2.2 Estimation procedure

Loglikelihood. Let � denote the free parameters (i.e. the non-redundant �'s and 's) to
be estimated. If we assume that any missing elements of Y i are missing at random, then
the maximum-likelihood (ML) estimator of � will maximize the loglikelihood function that
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ignores the missing-data mechanism (Little & Rubin, 2002), which we call the observed-data
loglikelihood. Let li(�) denote the contribution of individual or case i to the observed-data
loglikelihood. The observed-data loglikelihood is

l(�) =
n∑

i=1
li(�)

=
n∑

i=1
log Pr(Y i ;obs = y i ;obs j gi = g)fi

=
G∑

g=1

∑

i2g
fi log




C∑

c=1
cjg

∏

m2obs i

rm∏

r=1
�I(yim=r)
mr jcg


 : (1)

The function (1) is di�cult to maximize directly, so we accomplish it indirectly by an
EM algorithm. At each cycle of EM, we maximize the expected value of the loglikelihood
function that augments the observed data with the latent variable Li ,

l�(�) =
n∑

i=1
l�i (�)

=
n∑

i=1
log Pr(Y i ;obs = y i ;obs ; Li j gi = g)fi

=
G∑

g=1

∑

i2g
fi log




C∏

c=1
I(Li=c)
cjg

C∏

c=1

∏

m2obs i

rm∏

r=1
�I(Li=c) I(yim=r)
mr jcg


 (2)

=
G∑

g=1

∑

i2g

C∑

c=1
fi I(Li = c) log ic

�
G∑

g=1

∑

i2g

C∑

c=1

∑

m2obs i

rm∑

r=1
fi I(Li = c) I(yim = r) log �mr jcg:

This is done with an Expectation or E-step followed by a Maximization or M-step.

E-step. In the E-step, we compute the expectation of (2) with respect to the distribution
of the missing data given the observed data, �xing the unknown parameters at their current
estimates. Because (2) is a linear function of the indicators I(Li = c), we replace these
indicators by their expectations, which are the posterior probabilities of class membership
given the observed items. The posterior probabilities are

�ic = Pr(Li = c j Y i ;obs = y i ;obs ; gi = g)

=
cjg

∏
m2obs i

∏rm
r=1 �

I(yim=r)
mr jcg∑C

c 0=1 c 0jg
∏
m2obs i

∏rm
r=1 �

I(yim=r)
mr jc 0g

: (3)

The E-step consists of computing the vector of posterior probabilities (�i1; : : : ; �iC) for i =
1; : : : ; n based on the current estimates of the 's and �'s.

M-step. For the M-step, note that the expectation of (2) is the sum of two terms, one
depending on the �'s, the other depending on the 's. The overall maximum with respect to
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� is achieved by maximizing the two terms separately. If we do not assume equality of �'s
across groups, then the maximizer with respect to the �'s is

�̂mr jcg =
∑
i2obs(g;m)

fi �ic I(yim = r)
∑rm
r 0=1

∑
i2obs(g;m)

fi �ic I(yim = r 0)

=
∑
i2obs(g;m)

fi �ic I(yim = r)
∑
i2obs(g;m)

fi �ic
; r = 1; : : : ; rm;

for each combination of group g, class c and item m, where obs(g;m) denotes the subset of
cases within group g for which Yim is non-missing. If we do assume equality of �'s across
groups,

�mr jc1 = �mr jc2 = � � � ; �mr jcG = �mr jc ;
then the maximum for the �'s occurs at

�̂mr jc =
∑
i2obs(m)

fi �ic I(yim = r)
∑rm
r 0=1

∑
i2obs(m)

fi �ic I(yim = r 0)

=
∑
i2obs(m)

fi �ic I(yim = r)
∑
i2obs(m)

fi �ic
; r = 1; : : : ; rm

for each combination of class c and item m, where obs(m) denotes the subset of cases for
which Yim is non-missing. If we do not assume equality of the 's across groups, then the
maximum with respect to the 's occurs at

̂cjg =
∑
i2g fi�ic∑C

c 0=1
∑
i2g fi�ic 0

for c = 1; : : : ; C and g = 1; : : : ; G. If the 's are constrained to be equal across groups, it
becomes

̂cjg = ̂c =
∑n
i=1 fi�ic∑C

c 0=1
∑n
i=1 fi�ic 0

:

Starting values. The loglikelihood function for this model is invariant to reordering of the
classes. This means that, depending on the starting values, EM may converge to any one of
C! equivalent modes in which the class labels 1; 2; : : : ; C have been permuted.

Our implementation gives users the option of providing starting values for the �'s and/or
's. If none are given, starting values are randomly generated from uniform distributions
subject to the usual sum-to-one constraints. In multigroup analyses, identical random starting
values are applied to each group.

For some datasets and models, EM may converge to a local minor mode. Users are
advised to repeat the estimation procedure from a variety of random starting values and
compare the loglikelihoods at the solutions to determine if minor modes are present.

Boundary solutions. In applications of LCA, it is not unusual for estimates of some  or
�-parameters to approach zero, which puts them on a boundary of the parameter space. A
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zero value for a , which corresponds to an empty class, may suggest that the number of
classes should be reduced. Empty-class solutions may also be local minor modes resulting
from \bad" (i.e., very implausible) random starting values. A zero value for a �-parameter
indicates that no individuals within a class provide the given response to an item.

Flattening constants. A solution at or near a boundary can make it impossible to compute
standard errors in the usual fashion. When the standard error procedures fail, we recommend
the use of attening constants for the �'s and/or 's. A attening constant introduces
information about each set of probabilities that sums to one. The constant k adds information
equivalent to k prior observations (individuals), spread equally across the categories. A small
positive value such as k = 1 is often su�cient to nudge the solution away from the boundary,
allowing standard errors to be computed. When k > 0, the EM algorithm maximizes a
function equal to the loglikelihood plus a penalty term. The penalty may be regarded as a
log-prior density function, and the resulting estimate may be regarded as a Bayesian posterior
mode. The default value of k = 0, which corresponds to no attening, is equivalent to a
uniform prior distribution and leads to ML estimates.

2.3 Standard errors

Loglikelihood derivatives. Suppose we collect the nonredundant free parameters of the
LCA model into a single parameter vector �. The contribution of case i in group g to the
observed-data loglikelihood function l(�) is

li(�) = fi log




C∑

c=1
cjg

∏

m2obs i

rm∏

r=1
�I(yim=r)
mr jcg


 :

Denote the vector of �rst derivatives of li by

l 0i (�) =
@
@�
li(�) =  i(�);

this is also called the score function for case i . Denote the matrix of second derivatives by

l 00i (�) =
@2

@� @�T
li(�) =  0i(�) =

@
@�T

 i(�):

Denote the total score vector by

 (�) =
n∑

i=1
 i(�) =

G∑

g=1

∑

i2g
 i(�):

If a solution �̂ lies in the interior of the parameter space, then it should satisfy  (�̂) = 0.
But if the estimate lies on a boundary, then some elements of  (�̂) may be nonzero.

Our implementation computes standard errors by three di�erent methods. These pro-
cedures will fail if �̂ lies on or near a boundary or if the model is under-identi�ed.
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Standard method. The default method for computing standard errors, which we call \stan-
dard," approximates the variance of �̂ by

V (�̂) �
(
�

n∑

i=1
 0i(�̂)

)�1

=
(
�

n∑

i=1
 ̂
0
i

)�1

; (4)

where  ̂
0
i is shorthand for  0i(�̂). If attening constants are used, the second derivatives of

the penalty function q(�) are included before the inverse is taken,

V (�̂) �
(
�

n∑

i=1
 0i(�̂)

)�1

=
(
�

n∑

i=1
 ̂
0
i � q

00
(�̂)

)�1

:

Fast method. The \fast" method, which uses only the �rst derivatives, approximates the
variance of �̂ by

V (�̂) �
( n∑

i=1
f �1
i  i(�̂) i(�̂)T

)�1

=
( n∑

i=1
f �1
i  ̂i ̂

T
i

)�1

; (5)

where  ̂i is shorthand for  i(�̂). The factor f �1
i inside of the sum is necessary to ensure

that results are the same whether data are aggregated or not. This form is consistent with
an asymptotic sequence in which the individuals are exchangeable and the total number of
individuals (rather than the total number of cases, if the data are aggregated) goes to in�nity.
Flattening constants, if present, are not used in the computation of these standard errors;
the penalty function is ignored.

Sandwich method. The \sandwich" method approximates the variance of �̂ by

V (�̂) �
(
�

n∑

i=1
 ̂
0
i

)�1 ( n∑

i=1
f �1
i  ̂i ̂

T
i

) (
�

n∑

i=1
 ̂
0
i

)�1

: (6)

In other types of statistical models (e.g., regression analyses), standard errors computed by
the sandwich method are sometimes called \empirical" or \robust." If a penalty function is
present, the sandwich estimator becomes

V (�̂) �
(
�

n∑

i=1
 ̂
0
i � q

00
(�̂)

)�1 ( n∑

i=1
f �1
i  ̂i ̂

T
i

) (
�

n∑

i=1
 ̂
0
i � q

00
(�̂)

)�1

:

3 Example: HIV immunoassay

3.1 Fitting a latent-class model

Yang and Becker (1997) described a study to assess the accuracy of diagnostic tests for
human immunode�ciency virus (HIV) infection. Four tests were applied to each of 428 high-
risk patients. The data, which have been provided in the dataset hivtest, are in aggregated
form:
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> data(hivtest)
> hivtest
A B C D COUNT

1 1 1 1 1 170
2 1 1 1 2 15
3 1 2 1 1 6
4 2 1 1 1 4
5 2 1 1 2 17
6 2 1 2 2 83
7 2 2 1 1 1
8 2 2 1 2 4
9 2 2 2 2 128

The four tests are labeled A, B, C, and D. For each test, 1 indicates a positive result and
2 indicates a negative result. None of these tests can be considered a gold standard, and
the authors applied latent-class analysis to estimate the sensitivity and speci�city of each
test. There are presumably two latent classes corresponding to the true positives and true
negatives.

3.2 Using the lca function

The syntax of the lca function is shown below.

lca( formula, data, freq, groups, nclass = 2,
constrain.rhos = F, constrain.gammas = F, iseeds = NULL,
iter.max = 5000, tol = 1e-06, starting.values = NULL,
flatten.rhos = 0, flatten.gammas = 0, se.method = "STANDARD",
weights, clusters, strata, subpop)

The only required argument is formula. This is an R object of class "formula" which
determines the model to be �t. It is similar to the formulas used in the familiar R regression
procedures lm and glm. Unlike standard regression models, however, an LCA model is a
multivariate model with multiple response variables. The response is actually a matrix whose
columns are polytomous items. The two-class model may be �t like this:

> set.seed(123) # to reproduce these results
> fit <- lca( cbind(A,B,C,D)~1, freq=COUNT, nclass=2, data=hivtest)

Some details of this syntax are explained below.

� In the model formula cbind(A,B,C,D)~1, The expression term on the left-hand side
of ~ must be a matrix (not a data frame) of variables to be used as responses. Each
response variable should consist of integer codes 1,2,.... Response variables may also
be factors, in which case they will be automatically converted to integer codes (as in
the function unclass), and the levels of the factors will be ignored. The right-hand
side of formula should be 1, indicating that the only predictor is a constant; any other
predictors in the model formula will be ignored.
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� Missing values in response variables are allowed and should be conveyed by the R missing
value code NA. Cases with missing responses are retained in the �tting procedure, and
the missing values are assumed to be ignorably missing or missing at random.

� The number of latent classes to be �t is determined by nclass, with nclass=1 indi-
cating that the response variables are jointly independent.

� By default, each case (row) of data or the model environment is assumed to represent
one observational unit or individual. Data may also be aggegated, with individuals
bearing identical responses to all variables (including NA's, if present) collapsed into a
single case, with frequencies conveyed through the numeric variable freq.

� By default, lca generates random starting values for the model parameters. The
function uses its own internal random number generator which is seeded by a pair
of integers through the optional argument seeds (for example, seeds=c(123,456)),
which allows results to be reproduced in the future. If seeds is not provided, then the
function will seed itself with two random integers from R. Therefore, the results can
also be made reproducible by calling the R function set.seed beforehand.

3.3 Displaying the results

The result from lca is an object of class "lca" which contains a large number of components.
To see a nicely formatted set of results, apply the summary command:

> summary(fit)

Summary of Latent-Class Analysis

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 13 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 9.0000000
Loglikelihood: -629.8826889
Loglikelihood + penalty: -629.8826889
-2 * Loglikelihood: 1259.7653778
AIC (smaller is better): 1277.7653778
BIC (smaller is better): 1314.2974866

====================================================
Parameter estimates
====================================================
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Class prevalences (gammas):
Class: 1 2

0.4599 0.5401

Item-response probabilities (rhos):
Response category 1

Class: 1 2
A 0.9703 0.0000
B 0.9644 0.4290
C 1.0000 0.0871
D 0.9195 0.0000

Response category 2
Class: 1 2

A 0.0297 1.0000
B 0.0356 0.5710
C 0.0000 0.9129
D 0.0805 1.0000

It is estimated that 46.0% of the individuals fall into Class 1, and 54.0% fall into Class 2. From
the estimated measurement parameters (the �'s), we see that Class 1 contains individuals
who are likely to test positive on every test (the true positives), whereas Class 2 contains
those who are likely to test negative on every test (the true negatives). The estimated
sensitivities for tests A, B, C, and D are 97.0%, 96,4%, 100% and 91.9%, respectively, and
the estimated speci�cities are 100%, 57.1%, 91.3% and 100%.

Di�erent starting values for the parameters may lead to solutions in which the classes
have di�erent orderings. You can permute the the classes using the function permute.class.
For example, this code will display the same information, but with the order of the classes
reversed.

> fit <- permute.class(fit, c(2,1) ) # reverse the order of the classes
> summary(fit)

3.4 Standard errors and boundary solutions

By default, summary does not display standard errors for the parameters in an lca object. To
see the standard errors, supply the argument show.all=T:

> summary(fit, show.all=T)

Summary of Latent-Class Analysis

====================================================
Data and model information
====================================================

Number of cases: 9
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Total frequency for all cases: 428

Number of measurement items: 4
Number of categories per item: 2 2 2 2
Number of latent classes: 2

Starting values for rhos: randomly generated
Random seed 1: 288
Random seed 2: 788
Starting values for gammas: uniform values

Max. number of EM iterations: 5000
Convergence criterion: 0.000001

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 13 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 9.0000000
Loglikelihood: -629.8826889
Loglikelihood + penalty: -629.8826889
-2 * Loglikelihood: 1259.7653778
AIC (smaller is better): 1277.7653778
BIC (smaller is better): 1314.2974866

====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2

0.5401 0.4599

Item-response probabilities (rhos):
Response category 1

Class: 1 2
A 0.0000 0.9703
B 0.4290 0.9644
C 0.0871 1.0000
D 0.0000 0.9195

Response category 2
Class: 1 2

A 1.0000 0.0297
B 0.5710 0.0356
C 0.9129 0.0000
D 1.0000 0.0805
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Standard errors for class prevalences (gammas):
Est. Std.Err

Class 1 0.54006 0.02458
Class 2 0.45994 0.02458

Standard errors for item-response probabilities (rhos):
Est. Std.Err

Class 1, A, Response 1 0.00000 0.06647
Class 1, A, Response 2 1.00000 0.06647
Class 1, B, Response 1 0.42895 0.03271
Class 1, B, Response 2 0.57105 0.03271
Class 1, C, Response 1 0.08715 0.02029
Class 1, C, Response 2 0.91285 0.02029
Class 1, D, Response 1 0.00000 0.02155
Class 1, D, Response 2 1.00000 0.02155
Class 2, A, Response 1 0.97025 0.01567
Class 2, A, Response 2 0.02975 0.01567
Class 2, B, Response 1 0.96441 0.01463
Class 2, B, Response 2 0.03559 0.01463
Class 2, C, Response 1 1.00000 0.07195
Class 2, C, Response 2 0.00000 0.07195
Class 2, D, Response 1 0.91945 0.02018
Class 2, D, Response 2 0.08055 0.02018

To see more options for summary, view the help �le for the method summary.lca.

In this example, the  parameters appear to have reasonable standard errors, but some
of the �'s do not, because their estimated values are zero and one. When the solution lies on a
boundary of the parameter space, the derivatives of the loglikelihood function at the solution
are not all zero, and the procedures used to compute standard errors are not trustworthy. You
can examine the derivatives yourself, because they are stored in the lca object in a component
named score.

> round(fit$score, 3)
rho[1,1,2,1] rho[2,1,2,1] rho[3,1,2,1] rho[4,1,2,1] rho[1,1,1,1] rho[2,1,1,1]

-0.001 0.000 196.421 0.000 -222.408 0.000
rho[3,1,1,1] rho[4,1,1,1] gamma[2,1]

0.000 -164.457 0.000

3.5 Flattening constants

Boundary solutions are extremely common in latent-class analysis. To draw parameter es-
timates away from the boundary, you may supply attening constants to lca through the
arguments flatten.gammas and flatten.rhos. For small datasets like this one, constants
of 1.0 should be su�cient. In the call to lca shown below, we use the current parameter
estimates as the starting values for a new run of the EM algorithm, this time with attening
constants for  and �.
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> fit2 <- lca( cbind(A,B,C,D)~1, freq=COUNT, nclass=2, data=hivtest,
+ starting.values=fit$param, flatten.gammas=1, flatten.rhos=1)

> round(fit2$score,3)
rho[1,1,1,1] rho[2,1,1,1] rho[3,1,1,1] rho[4,1,1,1] rho[1,1,2,1] rho[2,1,2,1]

0.000 0.000 0.000 0.005 0.001 0.000
rho[3,1,2,1] rho[4,1,2,1] gamma[1,1]

0.000 0.000 0.000

The scores, which are now the derivatives of the loglikelihood plus a penalty function (i.e.,
a log-posterior density) are nearly zero at this new solution. (Setting a tighter convergence
criterion by reducing the size of the argument tol would bring them even closer to zero.)
With these attening constants, the parameter estimates have changed very little, but the
standard errors are now a bit more reasonable:

Standard errors for class prevalences (gammas):
Est. Std.Err

Class 1 0.54023 0.02422
Class 2 0.45977 0.02422

Standard errors for item-response probabilities (rhos):
Est. Std.Err

Class 1, A, Response 1 0.00224 0.00316
Class 1, A, Response 2 0.99776 0.00316
Class 1, B, Response 1 0.42897 0.03259
Class 1, B, Response 2 0.57103 0.03259
Class 1, C, Response 1 0.08939 0.01929
Class 1, C, Response 2 0.91061 0.01929
Class 1, D, Response 1 0.00281 0.00392
Class 1, D, Response 2 0.99719 0.00392
Class 2, A, Response 1 0.96834 0.01373
Class 2, A, Response 2 0.03166 0.01373
Class 2, B, Response 1 0.96272 0.01361
Class 2, B, Response 2 0.03728 0.01361
Class 2, C, Response 1 0.99747 0.00358
Class 2, C, Response 2 0.00253 0.00358
Class 2, D, Response 1 0.91710 0.02023
Class 2, D, Response 2 0.08290 0.02023

These are still not entirely believable, because approximate 95% con�dence intervals (estimate
plus or minus two standard errors) for some of these �'s still stray outside of the parameter
space. When a probability parameter lies close to zero or one, a symmetric interval on the
probability scale will have poor repeated-sampling properties, and a symmetric interval on an
open-ended scale (e.g., the log odds) will tend to perform better. Computing standard errors
for the log-odds is not di�cult, but we have chosen not to do this because, in our experience,
high-performance con�dence intervals for the measurement parameters are rarely needed.

Although the default values for flatten.gammas and flatten.rhos are zero, which
corresponds to no attening, it is not a bad idea to use positive attening constants as a
matter of routine.
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3.6 Information held in the lca object

An lca object holds a large amount of information that is not displayed by summary.lca. If
you are interested in computational details, or if you need to extract and save information
from the model �tting procedure, you can probably �nd what you need by examining the
components of the object.

> names(fit2)
[1] "u" "freq" "groups"
[4] "nclass" "constrain.rhos" "constrain.gammas"
[7] "starting.values" "use.startval.rho" "use.startval.gamma"

[10] "flatten.rhos" "flatten.gammas" "se.method"
[13] "weights" "clusters" "strata"
[16] "subpop" "iter.max" "tol"
[19] "iseeds" "ncases" "nitems"
[22] "ngroups" "nlevs" "maxlevs"
[25] "dim.theta" "group.levels" "stratum.levels"
[28] "cluster.levels" "class.levels" "item.names"
[31] "case.names" "design.stats.int" "design.stats.real"
[34] "iter" "converged" "loglik"
[37] "logpost" "loglik.final" "logpost.final"
[40] "AIC" "BIC" "param"
[43] "post.probs" "se.fail" "se.rho"
[46] "se.gamma" "theta.names" "theta"
[49] "score" "hessian" "sandwich.meat"
[52] "cov.theta" "deff.trace" "msg"

The method summary.fit retains all the original components of the lca object and adds
some more.

> fit2 <- summary(fit2)
> names(fit2)
[1] "u" "freq" "groups"
[4] "nclass" "constrain.rhos" "constrain.gammas"
[7] "starting.values" "use.startval.rho" "use.startval.gamma"

[10] "flatten.rhos" "flatten.gammas" "se.method"
[13] "weights" "clusters" "strata"
[16] "subpop" "iter.max" "tol"
[19] "iseeds" "ncases" "nitems"
[22] "ngroups" "nlevs" "maxlevs"
[25] "dim.theta" "group.levels" "stratum.levels"
[28] "cluster.levels" "class.levels" "item.names"
[31] "case.names" "design.stats.int" "design.stats.real"
[34] "iter" "converged" "loglik"
[37] "logpost" "loglik.final" "logpost.final"
[40] "AIC" "BIC" "param"
[43] "post.probs" "se.fail" "se.rho"
[46] "se.gamma" "theta.names" "theta"
[49] "score" "hessian" "sandwich.meat"
[52] "cov.theta" "deff.trace" "msg"
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[55] "show.header" "show.data.model" "show.fit"
[58] "show.param" "show.se.gamma" "show.se.rho"
[61] "n.table" "freq.table" "model.table"
[64] "fit.table" "gamma.rho.table" "gamma.table"
[67] "rho.table"

4 Example: Attitudes toward legalized abortion

4.1 The data

The General Social Survey (GSS) tracks attitudes of adults in the United States on a wide
range of issues. The dataset abortion, which was extracted from the 2006 GSS, reports
responses to six questions about legalized abortion. The help �le for this dataset is shown
below.

abortion package:lcca R Documentation

Abortion attitudes from the 2006 General Social Survey

Description:

This dataset, which was extracted from the 2006 General Social
Survey, report the responses of adults in the United States to six
questions about legalized abortion. The questions began, ``Please
tell me whether or not you think it should be possible for a
pregnant woman to obtain a legal abortion if...''

Usage:

abortion

Format:

a data frame with 4510 rows and 8 variables:

'SEX' respondent's sex (factor with two levels)

'ABANY' ``...The woman wants it for any reason?'' (factor with
five levels)

'ABDEFECT' ``...If there is a strong chance of serious defect in
the baby?'' (factor with five levels)

'ABHLTH' ``...If the woman's own health is seriously endangered by
the pregnancy?'' (factor with five levels)

'ABNOMORE' ``...If she is married and does not want any more
children?'' (factor with five levels)
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'ABPOOR' ``...If the family has a very low income and cannot
afford any more children?'' (factor with five levels)

'ABRAPE' ``...If she became pregnant as a result of rape?''
(factor with five levels)

'WTSSNR' analytic weight adjusted for subsampling of initial
nonrespondents (numeric)

Details:

Because of the split half-sample design used in the 2006 GSS, only
about half of the sampled adults were asked the abortion
questions. The response code '"NAP"' (not applicable) indicates
that the question was not asked. The other response codes are
'"YES"', '"NO"' and '"DK"' (Don't know). A missing value ('NA')
indicates that the question was asked but no answer was given.
Analysts should recode '"NAP"' to a missing value. Whether '"DK"'
should be converted to a missing value is debatable.

Although the GSS has a complex multistage area sampling plan, it
was designed to be self-weighting in the sense that every adult in
the sample frame had an approximately equal chance of being
selected. However, many sampled persons did not respond to the
initial interview request. To help reduce nonresponse bias, a
random sample of these nonrespondents were selected for aggressive
followup attempts. Those who were successfully interviewed in
this followup procedure ought to be assigned greater weight,
because they need to represent those who were not selected for
followup. The variable 'WTSSNR' is a weight that adjusts for this
nonresponse followup procedure, and the GSS documentation
recommends that this weight be used in analyses.

Latent-class analyses of abortion questions from earlier GSS
surveys were reported by McCutcheon (1987) and by McCutcheon and
Nawojczyk (1987).

Source:

Davis, J.A. and Smith, T. W. (2007) _General Social Surveys,
1972-2006_ (machine-readable data file). Chicago: National
Opinion Research Center (producer). Storrs, CT: The Roper Center
for Public Opinion Research, University of Connecticut
(distributor).

References:

McCutcheon, A.L. (1987) Sexual morality, pro-life values, and
attitudes toward abortion: a simultaneous latent structure
analysis for 1978-1983. _Sociological Methods and Research_, 16,
256-275.

McCutcheon, A.L. and Nawojczyk, M. (1995) Making the break:
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popular sentiment toward legalized abortion among American and
Polish Catholic laities. _International Journal of Public Opinion
Research_, 7, 232-252.

For example analyses of this dataset using functions in the LCCA
package, see the manual _LCCA Package for R, Version 1_ in the
subdirectory 'doc'.

4.2 Comparing two- and three-class solutions

We can �t a two-class model as follows.

> # retrieve the data
> data(abortion)
> summary(abortion)

SEX ABANY ABDEFECT ABHLTH ABNOMORE ABPOOR
FEMALE:2507 DK : 50 DK : 68 DK : 62 DK : 65 DK : 63
MALE :2003 NAP :2507 NAP :2507 NAP :2507 NAP :2507 NAP :2507

NO :1155 NO : 495 NO : 233 NO :1107 NO :1106
YES : 784 YES :1425 YES :1692 YES : 818 YES : 822
NA's: 14 NA's: 15 NA's: 16 NA's: 13 NA's: 12

ABRAPE WTSSNR
DK : 76 Min. :0.36
NAP :2507 1st Qu.:0.50
NO : 429 Median :0.86
YES :1483 Mean :1.00
NA's: 15 3rd Qu.:1.10

Max. :6.59

> # recode NAP and DK as missing values, and
> # reverse the order of the levels so that 1=YES and 2=NO
> abortion$ABANY <- factor(abortion$ABANY, levels=c("YES","NO") )
> abortion$ABDEFECT <- factor(abortion$ABDEFECT, levels=c("YES","NO") )
> abortion$ABHLTH <- factor(abortion$ABHLTH, levels=c("YES","NO") )
> abortion$ABNOMORE <- factor(abortion$ABNOMORE, levels=c("YES","NO") )
> abortion$ABPOOR <- factor(abortion$ABPOOR, levels=c("YES","NO") )
> abortion$ABRAPE <- factor(abortion$ABRAPE, levels=c("YES","NO") )
> summary(abortion)

SEX ABANY ABDEFECT ABHLTH ABNOMORE ABPOOR
FEMALE:2507 YES : 784 YES :1425 YES :1692 YES : 818 YES : 822
MALE :2003 NO :1155 NO : 495 NO : 233 NO :1107 NO :1106

NA's:2571 NA's:2590 NA's:2585 NA's:2585 NA's:2582

ABRAPE WTSSNR
YES :1483 Min. :0.36
NO : 429 1st Qu.:0.50
NA's:2598 Median :0.86

Mean :1.00
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3rd Qu.:1.10
Max. :6.59

> # fit a two-class model
> set.seed(234)
> fit2 <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=2, flatten.gammas=1, flatten.rhos=1)
> summary(fit2)

Summary of Latent-Class Analysis

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 30 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 13.000000
Loglikelihood: -4633.761747
Loglikelihood + penalty: -4654.192414
-2 * Loglikelihood: 9267.523493
AIC (smaller is better): 9293.523493
BIC (smaller is better): 9376.906175

====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2

0.4297 0.5703

Item-response probabilities (rhos):
Response category 1

Class: 1 2
ABANY 0.8843 0.0443
ABDEFECT 0.9955 0.5438
ABHLTH 0.9990 0.7840
ABNOMORE 0.9400 0.0401
ABPOOR 0.9222 0.0528
ABRAPE 0.9952 0.6012

Response category 2
Class: 1 2

ABANY 0.1157 0.9557
ABDEFECT 0.0045 0.4562
ABHLTH 0.0010 0.2160
ABNOMORE 0.0600 0.9599
ABPOOR 0.0778 0.9472
ABRAPE 0.0048 0.3988
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Class 1, which comprises about 43% of the population, consists of individuals who are support
legalized abortion in nearly all circumstances. Class 2, which comprises the remaining 57%,
is generally opposed to legalized abortion \for any reason" (ABANY), if the woman doesn't
want to have more children (ABNOMORE), or for economic reasons (ABPOOR).

A richer description emerges when we �t a three-class model:

> # fit a three-class model
> set.seed(654)
> fit3 <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, flatten.gammas=1, flatten.rhos=1)
> summary(fit3)

Summary of Latent-Class Analysis

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 61 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 20.000000
Loglikelihood: -4254.929675
Loglikelihood + penalty: -4287.879532
-2 * Loglikelihood: 8509.859350
AIC (smaller is better): 8549.859350
BIC (smaller is better): 8678.140399

====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2 3

0.3937 0.4076 0.1986

Item-response probabilities (rhos):
Response category 1

Class: 1 2 3
ABANY 0.0710 0.9145 0.0201
ABDEFECT 0.8217 0.9961 0.0542
ABHLTH 0.9837 0.9987 0.4002
ABNOMORE 0.0729 0.9661 0.0134
ABPOOR 0.1073 0.9397 0.0020
ABRAPE 0.8659 0.9960 0.1193

Response category 2
Class: 1 2 3

ABANY 0.9290 0.0855 0.9799
ABDEFECT 0.1783 0.0039 0.9458
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ABHLTH 0.0163 0.0013 0.5998
ABNOMORE 0.9271 0.0339 0.9866
ABPOOR 0.8927 0.0603 0.9980
ABRAPE 0.1341 0.0040 0.8807

The �-parameters for the new Class 2 (41%) are similar to those from the old Class 1; they
describe people who favor legalized abortion under any circumstances. But the old Class 2
has now split into the new Class 3 (20%), a group which tends to oppose legalized abortion
except when the health of the woman is endangered (ABHLTH), and the new Class 1 (39%),
a group which tends to support legalized abortion in cases of moral and ethical dilemma
(ABDEFECT, ABHLTH, ABRAPE) but tends oppose it for social and economic reasons (ABANY,
ABNOMORE, ABPOOR). Comparing the �t statistics for these two models, we see that introducing
7 additional free parameters has decreased the deviance (2 � loglikelihood) by 9267:5 �
8509:9 = 757:6. Latent-class models with di�erent numbers of classes should not be formally
compared by a standard likelihood-ratio test, because such comparisons violate the conditions
that are necessary for the chisquare approximation to apply. Nevertheless, the loglikelihood
does show a dramatic improvement, as do the penalized likelihood �t criteria AIC and BIC.
Analyses of GSS data from previous years by McCutcheon (1987) and McCutcheon and
Nawojczyk (1995) have led to similar conclusions that a three-class model seems preferable
to two.

4.3 A four-class solution

Moving on to a four-class solution, we �nd that the improvement in �t is less dramatic:

> # fit a four-class model
> set.seed(99)
> fit4 <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=4, flatten.gammas=1, flatten.rhos=1)
> summary(fit4, show.header=F, show.param=F)
====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 980 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 27.000000
Loglikelihood: -4248.568686
Loglikelihood + penalty: -4290.884736
-2 * Loglikelihood: 8497.137373
AIC (smaller is better): 8551.137373
BIC (smaller is better): 8724.316789

Introducing 7 additional parameters decreased the deviance by only 12.7. Moreover, the
AIC and BIC statistics both increased, suggesting that the three-class model is preferable.
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Another troubling aspect of this four-class model is the presence of a minor mode. If we run
the EM algorithm repeatedly from di�erent random starting values, we see that approximately
one-third of the solutions have a loglikelihood value that is slightly lower:

> # run EM 100 times from different random starts
> loglik4 <- numeric(100)
> set.seed(432)
> for( i in 1:100 ){
+ set.seed(i)
+ loglik4[i] <- lca(
+ cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=4, flatten.gammas=1,
+ flatten.rhos=1)$loglik.final
+ }

> # tabulate the loglikelihood values, rounded off to nearest 0.1
> table( round(loglik4, 1) )

-4249.7 -4248.6
32 68

At the major mode, the prevalence of the smallest class is about 6.6%:

> # major mode
> set.seed(99)
> fit <- lca(
+ cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=4, flatten.gammas=1,
+ flatten.rhos=1)

> round( fit$loglik.final, 1 )
[1] -4248.6

> summary( fit, show.header=F, show.param=F, show.fit=F, show.se.gamma=T)
Standard errors for class prevalences (gammas):

Est. Std.Err
Class 1 0.06576 0.02552
Class 2 0.34757 0.02701
Class 3 0.39114 0.01487
Class 4 0.19553 0.01125

But at the minor mode, the smallest class has a prevalence of about 1.7%:

> # minor mode
> set.seed(103)
> fit <- lca(
+ cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=4, flatten.gammas=1,
+ flatten.rhos=1)
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> round( fit$loglik.final, 1 )
[1] -4249.7

> summary( fit, show.header=F, show.param=F, show.fit=F, show.se.gamma=T)
Standard errors for class prevalences (gammas):

Est. Std.Err
Class 1 0.19847 0.01127
Class 2 0.40789 0.01167
Class 3 0.37600 0.02069
Class 4 0.01765 0.01730

Minor modes and rare classes are symptomatic of latent-class models that are too complex.
Another sign that a model may have too many classes is when the �-parameters are di�cult
to interpret and fail to tell a compelling story about how the classes di�er. In this major-mode
solution, Classes 1 and 2 both exhibit mixed attitudes toward legalized abortion; the largest
di�erence is with respect to ABPOOR, and whether that di�erence is important enough to
warrant another class is not clear to us.

> summary(fit,show.header=F,show.fit=F)
====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2 3 4

0.3476 0.0658 0.3911 0.1955

Item-response probabilities (rhos):
Response category 1

Class: 1 2 3 4
ABANY 0.0592 0.2760 0.9258 0.0204
ABDEFECT 0.8064 0.9090 0.9968 0.0522
ABHLTH 0.9836 0.9797 0.9992 0.3919
ABNOMORE 0.0677 0.1993 0.9867 0.0132
ABPOOR 0.0198 0.7753 0.9397 0.0024
ABRAPE 0.8559 0.9195 0.9971 0.1150

Response category 2
Class: 1 2 3 4

ABANY 0.9408 0.7240 0.0742 0.9796
ABDEFECT 0.1936 0.0910 0.0032 0.9478
ABHLTH 0.0164 0.0203 0.0008 0.6081
ABNOMORE 0.9323 0.8007 0.0133 0.9868
ABPOOR 0.9802 0.2247 0.0603 0.9976
ABRAPE 0.1441 0.0805 0.0029 0.8850

4.4 Analyses with multiple groups

The lca function has an optional argument groups which allows you to �t models in which
the 's or �'s vary across levels of a categorical variable. Using this feature, you can test
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whether the measurement is invariant across groups. In the abortion attitudes dataset, for
example, does the same three-class structure apply to both men and women? To see if it
does, we �rst �t a three-class model in which the �'s are constrained to be equal for men
and women. Next, we �t a model in which the �'s are allowed to vary. The �t of the two
models can be compared by a standard likelihood-ratio test, which has been implemented in
a function called compare.fit.

> # three-class model grouped by SEX with rho's constrained to be equal
> set.seed(588)
> fit3a <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, groups=SEX, constrain.rhos=T,
+ flatten.gammas=1, flatten.rhos=1)
>
> # three-class model grouped by SEX with rho's allowed to vary
> fit3b <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, groups=SEX, constrain.rhos=F,
+ flatten.gammas=1, flatten.rhos=1)

> compare.fit( fit3a, fit3b )
$Chi.Sq
[1] 15.56379

$df
[1] 18

$p
[1] 0.6229616

The data show little evidence that the �-parameters di�er by sex, leading us to conclude that
it is reasonable to describe men and women by the same three-class model. Indeed, if we
examine the estimates from the unconstrained model, we see that the � parameters for men
and women look very similar:

> summary( fit3b, show.header=F, show.fit=F )
====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2 3

FEMALE 0.2085 0.4025 0.3889
MALE 0.1898 0.3771 0.4332

Item-response probabilities (rhos) by group:

FEMALE
Response category 1

Class: 1 2 3
ABANY 0.0057 0.0810 0.9172
ABDEFECT 0.0404 0.8256 0.9954



LCCA Package for R, Version 1 26

ABHLTH 0.3825 0.9865 0.9988
ABNOMORE 0.0046 0.0608 0.9680
ABPOOR 0.0022 0.1042 0.9445
ABRAPE 0.1127 0.8562 0.9982

FEMALE
Response category 2

Class: 1 2 3
ABANY 0.9943 0.9190 0.0828
ABDEFECT 0.9596 0.1744 0.0046
ABHLTH 0.6175 0.0135 0.0012
ABNOMORE 0.9954 0.9392 0.0320
ABPOOR 0.9978 0.8958 0.0555
ABRAPE 0.8873 0.1438 0.0018

MALE
Response category 1

Class: 1 2 3
ABANY 0.0449 0.0575 0.9095
ABDEFECT 0.0916 0.8166 0.9954
ABHLTH 0.4274 0.9850 0.9965
ABNOMORE 0.0294 0.0900 0.9624
ABPOOR 0.0087 0.1113 0.9317
ABRAPE 0.1480 0.8781 0.9918

MALE
Response category 2

Class: 1 2 3
ABANY 0.9551 0.9425 0.0905
ABDEFECT 0.9084 0.1834 0.0046
ABHLTH 0.5726 0.0150 0.0035
ABNOMORE 0.9706 0.9100 0.0376
ABPOOR 0.9913 0.8887 0.0683
ABRAPE 0.8520 0.1219 0.0082

Do the class prevalences vary by sex? To �nd out, we apply a similar technique to the 's:

> summary( fit3b, show.header=F, show.fit=F )
> # constrain rho's and gamma's to be equal
> set.seed(32)
> fit3c <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, groups=SEX, constrain.rhos=T, constrain.gammas=T,
+ flatten.gammas=1, flatten.rhos=1)

> # constrain rho's but allow gamma's to vary
> fit3d <- lca( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, groups=SEX, constrain.rhos=T, constrain.gammas=F,
+ flatten.gammas=1, flatten.rhos=1)

> compare.fit( fit3c, fit3d )
$Chi.Sq
[1] 4.605563
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Figure 2: Latent-class analysis with covariates.

$df
[1] 2

$p
[1] 0.09998036

The evidence for di�ering 's is stronger but not conclusive.

Another way to see whether class prevalences vary in relation to covariates is to incor-
porate those covariates into the model as regressors and apply the function lcacov, as we
now describe.

5 Latent class analysis with covariates

5.1 The model

Let x i = (xi1; xi2; : : : ; xip)T denote a p � 1 vector of covariates associated with individ-
ual i which may inuence the probability of belonging to class Li = c for c = 1; : : : ; C.
These covariates will not be modeled; they will be treated as �xed constants, analogous
to predictors in a regression model. We will suppose that x i inuences the manifest items
Y i = (Yi1; Yi2; : : : ; YiM)T only through the latent classi�er Li , as shown in Figure 2.

Following common practice, we will relate these covariates to class-membership proba-
bilities through a baseline-category logistic regression model (Agresti, 2002). The probability
that an individual i within group g belongs to class c is

icjg = Pr(Li = c j gi = g) =
exp(x i T�cjg)

∑C
c 0=1 exp(x i T�c 0jg)

;

where �cjg = (�1cjg; �2cjg; : : : ; �pcjg)T is a p � 1 vector of coe�cients to be estimated.
To identify the parameters, we must choose one of the classes, say class d , to serve as
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the baseline or reference class, and we set �d jg = (0; 0; : : : ; 0)T for that class. Under that
restriction, we have (

icjg
id jg

)
= x i T�cjg;

and the elements of �cjg become log-odds ratios for distinguishing class c from class d .
Latent-class models that incorporate covariates in this manner were described by Dayton and
Macready (1988) and by Bandeen-Roche et al. (1997). In most cases, the �rst element of
x i will be a constant, xi1 � 1. When p = 1 and x i = 1, this model becomes equivalent to
the latent-class model without covariates, where cjg = exp(�cjg)=

∑C
c 0=1 exp(�c 0jg).

5.2 Estimation procedure

The contribution of case i in group g to the observed-data loglikelihood is now

li(�) = fi log




C∑

c=1

{
exp(x i T�c jg)

∑C
c 0=1 exp(x i T�c 0jg)

} ∏

m2obs i

rm∏

r=1
�I(yim=r)
mr jcg


 ;

and the observed-data likelihood is now

l(�) =
G∑

g=1

∑

i2g
fi log




C∑

c=1

{
exp(x i T�cjg)

∑C
c 0=1 exp(x i T�c 0jg)

} ∏

m2obs i

rm∏

r=1
�I(yim=r)
mr jcg


 :

Once again, we maximize this function by an EM algorithm in which the latent variables Li
play the role of missing data. If the Li 's were known, the loglikelihood would become

l�(�) =
G∑

g=1

∑

i2g

C∑

c=1
fi I(Li = c) log icjg

�
G∑

g=1

∑

i2g

C∑

c=1

∑

m2obs i

rm∑

r=1
fi I(Li = c) I(yim = r) log �mr jcg:

The E-step is very similar to the one for LCA without covariates. We compute posterior
probabilities as before,

�ic = Pr(Li = c j Y i ;obs = y i ;obs ; gi = g)

=
icjg

∏
m2obs i

∏rm
r=1 �

I(yim=r)
mr jcg∑C

c 0=1 ic 0jg
∏
m2obs i

∏rm
r=1 �

I(yim=r)
mr jc 0g

; (7)

but icjg is now a function of the covariates x i and the logistic coe�cients �1jg; : : : ;�Cjg.
The M-step for the �-parameters is unchanged, but the M-step for the -parameters is now
replaced by an update of the �'s that requires iteration.

The portion of the expected value of l�(�) that pertains to the �-parameters is

Q�(�) =
G∑

g=1

∑

i2g

C∑

c=1
fi�ic log icjg

=
G∑

g=1

∑

i2g

C∑

c=1
fi�ic log

(
exp(xTi �cjg)

∑C
c 0=1 exp(xTi �c 0jg)

)
: (8)
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For purposes of the M-step, the �ic 's are considered �xed. If we constrain the �'s to be
identical across groups,

�cj1 = �cj2 = � � � �cjG = �c ;
then the function becomes

Q�(�) =
n∑

i=1

C∑

c=1
fi�ic log icjg

=
n∑

i=1

C∑

c=1
fi�ic log

(
exp(xTi �c)

∑C
c 0=1 exp(xTi �c 0)

)
: (9)

Maximizing (9) is equivalent to �tting a multinomial logistic regression model to the dataset
with fractional outcomes fi�ic in the response categories c = 1; : : : ; C for all cases i =
1; : : : ; n. Maximizing (8) is equivalent to �tting the multinomial logistic regression model
with fractional outcomes separately within each group g = 1; : : : ; G.

The maximizer of (9) can be computed by Newton-Raphson as follows. Let � denote the
vector of nonredundant, free �-parameters. In the unconstrained case, we have dim(�) =
Gp(C � 1), and in the constrained case, we have dim(�) = p(C � 1). Each iteration of
Newton-Raphson can be written as

� (new) = � (old) +
[�Q00�(� (old))

]�1
Q0�(� (old));

where
Q0�(�) =

@
@�

Q�(�)

is the vector of �rst derivatives, and

Q00�(�) =
@2

@� @�T
Q�(�)

is the Hessian. In the unconstrained case, the �rst derivatives are
@

@�jc jg
Q�(�) =

∑

i2g
fi (�ic � icjg) xi j :

The Hessian has a block-diagonal structure in which the cross-derivatives for di�erent groups
vanish,

@2

@�jcjg @�j 0c 0jg0
Q�(�) = 0 for g0 6= g;

and the derivatives within a group are
@2

@�jc jg @�j 0c 0jg
Q�(�) = � ∑

i2g
fi icjg [ I(c = c 0) � ic 0 ] xi j xi j 0:

For the constrained case, the �rst derivatives are
@
@�jc

Q�(�) =
n∑

i=1
fi (�ic � ic) xi j ;

and the second derivatives are
@2

@�jc @�j 0c 0
Q�(�) = �

n∑

i=1
fi ic [ I(c = c 0) � ic 0 ] xi j xi j 0:
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5.3 Stabilizing the logistic coe�cients

In sparse-data situations where the number of covariates is large and/or some of the classes
are rare, some of the �-parameters may diverge toward +1 or �1 during the M-step. In
ordinary logistic regression, this condition is known as quasi-separation (Agresti, 2002). To
stabilize the coe�cients, we apply a penalty function to Q�(�) that can be viewed as a
data-dependent prior distribution. Stabilizing prior distributions for binary logistic regression
with an observed response were described by Clogg et al. (1991). In e�ect, the Clogg prior
adds a �ctitious fractional number of \successes" and \failures" to each case in the data �le.
Generalizing their method to our situation, the M-step for � will maximize Q�(�) + q�(�),
where the penalty term is

q�(�) =
G∑

g=1

∑

i2g

C∑

c=1
kic log icjg (10)

for the unconstrained model and

q�(�) =
n∑

i=1

C∑

c=1
kic log ic (11)

for the constrained model, where the kic 's are stabilizing constants.

In selecting the stabilizing constants, there are three choices to be made. First, we
must decide on the total number of �ctitious observations to add to the dataset. For an
unconstrained model, the total number of �ctitious observations added to group g is n�g =∑
i2g

∑C
c=1 kic . For a constrained model, the total number of �ctitious observations added to

the entire sample is n� =
∑n
i=1

∑C
c=1 kic . Clogg et al. (1991) argue that the total number of

�ctitious observations should be equal to (or, more generally, proportional to) the number of
covariates in the model, because the e�ective prior precision for the logit-probabilities of class
membership will then be the same for any model and any design. Adopting that principle, we
get n�g = p for g = 1; : : : ; G in an unconstrained model and n� = p in a constrained model.

The second choice that needs to be made is how to allocate the total number of �ctitious
observations to the cases in the sample. Clogg et al. opt for an equal allocation. In our
situation, an equal allocation would have a slight drawback. We allow the user to supply data
in an aggregated fashion, where each case i represents a group of individuals with identical
covariates and responses and fi is the number of sampled individuals in that group, or in a
disaggregated fashion, where the cases i = 1; : : : ; n represent individuals and all frequencies
f1 : : : ; fn are taken to be 1. Users should expect to get identical answers whether the data
are aggregated or not. By that principle, the number of �ctitious observations allocated to
each case should be proportional to fi . For an unconstrained model, proportional allocation
gives

C∑

c=1
kic = p

(
fi∑
i2g fi

)

for each case in group g. For a constrained model, it gives
C∑

c=1
kic = p

(
fi∑n
i=1 fi

)
:
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The third choice that needs to be made is how to allocate the total number of �titious
observations for case i across the classes c = 1; : : : ; C. Clogg et al. (1991) argue that the
allocation should be made in proportion to the outcome-class prevalences estimated without
covariates (i.e., from an intercept-only model). Because Clogg et al. were working with
a manifest outcome, they could estimate the outcome-class prevalences directly from the
marginal distribution of the outcome variable. To implement this procedure in our situation,
we need to �rst run the EM algorithm to convergence without covariates. Let ~ic denote
the estimated class-membership probability from the model without covariates. (If we are
assuming equality of �'s across groups, then ~ic will be equal for every case i = 1; : : : ; n in
the dataset; otherwise, it will be the same for every case within the same group g.) The
stabilizing constant becomes

kic = p
(

fi∑
i2g fi

)
~ic

for the unconstrained model, and

kic = p
(

fi∑n
i=1 fi

)
~ic

for the constrained model.

When stabilizing constants are included, the M-step for � proceeds with only a slight
modi�cation. For an unconstrained model, the objective function to be maximized becomes

Q�(�) + q�(�) =
G∑

g=1

∑

i2g

C∑

c=1
(fi�ic + kic) log icjg;

and the derivatives are now

@
@�jc jg

[Q�(�) + q�(�) ] =
∑

i2g
(fi + ki+)

(
fi �ic + kic
fi + ki+

� icjg
)
xi j

and

@2

@�jc jg @�j 0c 0jg
[Q�(�) + q�(�) ] = � ∑

i2g
(fi + ki+) icjg [ I(c = c 0) � ic 0 ] xi j xi j 0;

where ki+ =
∑C
c=1 kic . For a constrained model, the objective function is

Q�(�) + q�(�) =
n∑

i=1

C∑

c=1
(fi�ic + kic) log ic ;

and the derivatives are

@
@�jc

[Q�(�) + q�(�) ] =
n∑

i=1
(fi + ki+)

(
fi �ic + kic
fi + ki+

� ic

)
xi j

and

@2

@�jc @�j 0c 0
[Q�(�) + q�(�) ] = �

n∑

i=1
(fi + ki+) ic [ I(c = c 0) � ic 0 ] xi j xi j 0:
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5.4 Estimating the marginal class prevalences

When covariates are present in the model, it is useful to estimate the marginal class preva-
lences,

 �cjg = Pr(Li = c j gi = g);

where the covariates x i are no longer being conditioned upon. Note that these marginal
's could vary across the groups g = 1; : : : ; G even if the �'s are constrained to be equal,
because the distributions of x i may vary across groups. Estimates and standard errors for the
marginal 's using the method of expected estimating equations (Wang et al., 2008; Kang
& Schafer, submitted).

First, consider the scenario where there are no groups. The marginal 's to be estimated
are then

 �c = Pr(Li = c)

for c = 1; : : : ; C�1, and the redundant one is  �C = 1�∑C�1
c=1  �c . If the latent classes were

known, we could consistently estimate the marginal 's by

̂ �c =
∑n
i=1 fi I(Li = c)∑n

i=1 fi
: (12)

We can regard the estimates (12) as the solution to a set of C � 1 estimating equations
arising from a multinomial experiment replicated

∑n
i=1 fi times. The loglikelihood function

from these multinomial trials is
n∑

i=1
fi

[ C∑

c=1
I(Li = c) log  �c

]
=

n∑

i=1
fi

[C�1∑

c=1
I(Li = c) log  �c + I(Li = C) log

(
1�

C�1∑

c=1
 �c

)]
:

Di�erentiating this expression with respect to the nonredundant  �c 's gives the estimating
functions

∑n
i=1 !�ic for c = 1; : : : ; C � 1, where

!�ic = fi


 I(Li = c) �1�c � I(Li = C)

(
1�

C�1∑

c 0=1
 �c 0

)�1 
 :

Because the Li 's are not observed, we replace the estimating functions by their expectations
given the observed data,

!ic = E(!�ic j Y i ;obs = y i ;obs ; x i)

= fi


 �ic �1�c � �iC

(
1�

C�1∑

c 0=1
 �c 0

)�1 
 :

The estimated marginal 's become

̂ �c =
∑n
i=1 fi �̂ic∑n
i=1 fi

; (13)

where the �̂ic 's are the estimated posterior probabilities from the �nal E-step of EM.
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5.5 Standard errors for marginal class prevalences

Standard errors for these estimates may be computed as follows. Suppose we collect the
nonredundant marginal 's into a vector,  = ( �1; : : : ;  �C�1)T , and append these parameters
onto the vector of free model parameters � to get

�� = (�T; T )T = (�T;�T; T )T :

The estimate �̂
�

= (�̂
T
; ̂T )T can be regarded as the joint solution to an expanded set

of estimating equations in which the score functions for � are stacked upon the expected
estimating functions for . The stacked estimating equations are

n∑

i=1
 �i (��) + q 0(��) = 0 ;

where  i is the score function for � as de�ned in Section 2.3,  �i = ( Ti ;!Ti )T , !i =
(!i1; : : : ; !i ;C�1)T , and q 0(��) is the �rst derivative of the total penalty function q de�ned by
attening and stabilizing procedures applied to the �'s and the �'s. The sandwich variance
estimate for �̂

�
is

V (�̂
�
) �

(
�

n∑

i=1
 ̂
� 0
i � q 00(�̂�)

)�1 ( n∑

i=1
f �1
i  ̂

�
i  ̂
�T
i

) 


(
�

n∑

i=1
 ̂
� 0
i � q 00(�̂�)

)�1


T

; (14)

where  ̂
� 0
i denotes the matrix  � 0i = @ i=@�

�T evaluated at �� = �̂
�
. The matrix q 00(��) has

the pattern

q 00(��) =




@2q�
@� @�T

0 0

0
@2q�
@� @�T

0

0 0 0




:

The matrix  � 0i , which is not symmetric, has the pattern

 � 0i =




@ i
@��T

@!i
@��T




=




@2li
@� @�T

0

@!i
@�T

@!i
@T




=




@2li
@� @�T

@2li
@� @�T

0

@2li
@� @�T

@2li
@� @�T

0

@!i
@�T

@!i
@�T

@!i
@T




: (15)
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In the sandwich formula (14), the bread of the sandwich can be written as

(
�

n∑

i=1
 ̂
� 0
i � q 00(�̂�)

)�1

=




�
n∑

i=1

(
@2li

@� @�T

)
� q00(�) 0

�
n∑

i=1

(
@!i
@�T

)
�

n∑

i=1

(
@!i
@T

)




�1

=




(
�

n∑

i=1

(
@2li

@� @�T

)
� q00(�)

)�1

0

A B



;

where

A = �B
(
�

n∑

i=1

@!i
@�T

) (
�

n∑

i=1

(
@2li

@� @�T

)
� q00(�)

)�1

and

B =
(
�

n∑

i=1

@!i
@T

)�1

:

The meat of the sandwich (14) is

n∑

i=1
f �1
i  �i  �Ti =




n∑

i=1
f �1
i  i 

T
i

n∑

i=1
f �1
i  i!Ti

n∑

i=1
f �1
i !i Ti

n∑

i=1
f �1
i !i!Ti



:

Putting these together, we see that the estimated covariance matrix for ̂, the block in the
lower right-hand corner of (14), is

V (̂) � A
( n∑

i=1
f �1
i  i 

T
i

)
AT + B

( n∑

i=1
f �1
i !i Ti

)
AT

+ A
( n∑

i=1
f �1
i  i!Ti

)
BT + B

( n∑

i=1
f �1
i !i!Ti

)
BT : (16)

If a grouping variable is present, we need to estimate  �cjg for each class c within each
group g. The estimates, which are now given by

̂ �cjg =
∑
i2g fi �̂ic∑
i2g fi

;

can be regarded as the solution to a set of G(C�1) estimating equations,
∑n
i=1 !icjg = 0 for

c = 1; : : : ; C � 1 and g = 1; : : : ; G, where

!icjg = I(gi = g) fi
[
�ic �1�cjg � �iC �1�Cjg

]
:
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Arrange the  �cjg's into a vector , and de�ne �� = (�T ; T )T . Similarly, for each i , arrange
the !icjg's into vector of estimating functions !i , and let  �i = ( Ti ;!Ti )T . The sandwich
variance estimate has the same form (14) as before.

5.6 Example: Abortion attitudes

In Section 4.4, we �t a three-class model to the abortion dataset and found mild evidence
that the class prevalences varied by sex (p = 0:10). To perform that test, we �t two models
with lca using the option groups=SEX | one in which the class prevalences varied by SEX,
the other in which the prevalences varies by SEX | and compared the models by a likelihood-
ratio test. Now we will perform a similar analysis that uses SEX as a covariate in a logistic
model using the function lcacov.

lcacov( formula, data, freq, groups, nclass = 2, reference = 1,
constrain.rhos = F, constrain.alphas = F, iseeds = NULL,
iter.max = 5000, tol = 1e-06, starting.values = NULL, flatten.rhos = 0,
stabilize.alphas = 0, flatten.gammas = 0, se.method = "STANDARD",
weights, clusters, strata, subpop)

The syntax of lcacov is very similar to that of lcov. A few notable di�erences are:

� Covariates are now allowed in the model formula on the right-hand side of ~.

� Covariates may be numeric variables or factors. A factor variable will automatically be
entered into the model as a set of dummy codes or contrast terms de�ned by the factor's
contrasts attribute, as in the regression functions lm and glm. See help(contrasts)
for details.

� The argument reference speci�es the reference or baseline class for the logistic model.

� The optional argument flatten.gammas in lca has been replaced with stabilize.alphas.

With random starting values, we will not know in advance how the classes c = 1; : : : ; C
will be ordered in the solution, which makes it di�cult to select a desired class to serve as the
reference. One way to address this is to �rst �t a model with a given random seed, examine
the solution, and then re�t the model with the same seed and the desired reference class.
For example, if we �t a model to the abortion data as follows,

> # retrieve the data
> data(abortion)

> # recode NAP and DK as missing values, and
> # reverse the order of the levels so that 1=YES and 2=NO
> abortion$ABANY <- factor(abortion$ABANY, levels=c("YES","NO") )
> abortion$ABDEFECT <- factor(abortion$ABDEFECT, levels=c("YES","NO") )
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> abortion$ABHLTH <- factor(abortion$ABHLTH, levels=c("YES","NO") )
> abortion$ABNOMORE <- factor(abortion$ABNOMORE, levels=c("YES","NO") )
> abortion$ABPOOR <- factor(abortion$ABPOOR, levels=c("YES","NO") )
> abortion$ABRAPE <- factor(abortion$ABRAPE, levels=c("YES","NO") )

> set.seed(123)
> fit <- lcacov( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ SEX,
+ data=abortion, nclass=3, reference=3, flatten.rhos=1, stabilize.alphas=1)

and examine the output from summary(fit), we see the following marginal 's and �'s:

Class prevalences (marginal gammas):
Class: 1 2 3

0.3938 0.4084 0.1978

Item-response probabilities (rhos):
Response category 1

Class: 1 2 3
ABANY 0.0711 0.9144 0.0200
ABDEFECT 0.8214 0.9962 0.0538
ABHLTH 0.9834 0.9986 0.4001
ABNOMORE 0.0727 0.9661 0.0133
ABPOOR 0.1072 0.9397 0.0020
ABRAPE 0.8657 0.9960 0.1187

Response category 2
Class: 1 2 3

ABANY 0.9289 0.0856 0.9800
ABDEFECT 0.1786 0.0038 0.9462
ABHLTH 0.0166 0.0014 0.5999
ABNOMORE 0.9273 0.0339 0.9867
ABPOOR 0.8928 0.0603 0.9980
ABRAPE 0.1343 0.0040 0.8813

In this solution, Class 3 contains those who oppose legalized abortion in most or all cir-
cumstances, Class 2 contains those who support it in most or all circumstances, and Class
1 contains those whose attitudes are mixed. To designate the opposed group (the current
Class 3) as the reference category for the logistic model, we re�t the model using the same
random seed and reference=3. After the model has been �t, we may reorder the classes
using permute.class.

> set.seed(123)
> fit <- lcacov( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ SEX,
+ data=abortion, nclass=3, reference=3, flatten.rhos=1, stabilize.alphas=1)
> fit <- permute.class( fit, c(3,1,2) )
> summary( fit, show.all=T )

Summary of Latent-Class Analysis with Covariates

====================================================
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Data and model information
====================================================

Number of cases: 4510

Total frequency for all cases: 4510

Number of measurement items: 6
Number of categories per item: 2 2 2 2 2 2
Number of latent classes: 3
Reference class for logistic model: Class 1
Number of predictors

(including a constant, if present): 2

Starting values for rhos: randomly generated
Random seed 1: 288
Random seed 2: 788
Starting values for alphas: set to zero

Flattening constant for rhos: 1
Stabilizing constant for alphas: 1

Max. number of EM iterations: 5000
Convergence criterion: 0.000001

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 65 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 22.000000
Loglikelihood: -4252.624883
Loglikelihood + penalty: -4286.552199
-2 * Loglikelihood: 8505.249766
AIC (smaller is better): 8549.249766
BIC (smaller is better): 8690.358919

====================================================
Parameter estimates
====================================================

Class prevalences (marginal gammas):
Class: 1 2 3

0.1978 0.3938 0.4084

Item-response probabilities (rhos):
Response category 1

Class: 1 2 3
ABANY 0.0200 0.0711 0.9144
ABDEFECT 0.0538 0.8214 0.9962
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ABHLTH 0.4001 0.9834 0.9986
ABNOMORE 0.0133 0.0727 0.9661
ABPOOR 0.0020 0.1072 0.9397
ABRAPE 0.1187 0.8657 0.9960

Response category 2
Class: 1 2 3

ABANY 0.9800 0.9289 0.0856
ABDEFECT 0.9462 0.1786 0.0038
ABHLTH 0.5999 0.0166 0.0014
ABNOMORE 0.9867 0.9273 0.0339
ABPOOR 0.9980 0.8928 0.0603
ABRAPE 0.8813 0.1343 0.0040

Logistic regression coefficients (alphas):

, , Class 1/1

Estimate Std.Err Z.ratio Signif
(Intercept) 0 0 NaN NaN
SEXMALE 0 0 NaN NaN

, , Class 2/1

Estimate Std.Err Z.ratio Signif
(Intercept) 0.62775 0.097324 6.45 0.0000
SEXMALE 0.14406 0.141240 1.02 0.3077

, , Class 3/1

Estimate Std.Err Z.ratio Signif
(Intercept) 0.60626 0.088632 6.840 0.00
SEXMALE 0.27155 0.132230 2.054 0.04

Odds ratios:

, , Class 1/1

Estimate Lower.95.Pct Upper.95.Pct
(Intercept) 1 1 1
SEXMALE 1 1 1

, , Class 2/1

Estimate Lower.95.Pct Upper.95.Pct
(Intercept) 1.8734 1.54810 2.2671
SEXMALE 1.1549 0.87568 1.5233

, , Class 3/1

Estimate Lower.95.Pct Upper.95.Pct
(Intercept) 1.8336 1.5412 2.1814
SEXMALE 1.3120 1.0124 1.7002
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Standard errors for class prevalences (marginal gammas):
Est. Std.Err

Class 1 0.19784 0.01117
Class 2 0.39378 0.01323
Class 3 0.40837 0.01156

Standard errors for item-response probabilities (rhos):
Est. Std.Err

Class 1, ABANY , Response 1 0.02000 0.00825
Class 1, ABANY , Response 2 0.98000 0.00825
Class 1, ABDEFECT, Response 1 0.05383 0.01743
Class 1, ABDEFECT, Response 2 0.94617 0.01743
Class 1, ABHLTH , Response 1 0.40014 0.03070
Class 1, ABHLTH , Response 2 0.59986 0.03070
Class 1, ABNOMORE, Response 1 0.01330 0.00696
Class 1, ABNOMORE, Response 2 0.98670 0.00696
Class 1, ABPOOR , Response 1 0.00195 0.00267
Class 1, ABPOOR , Response 2 0.99805 0.00267
Class 1, ABRAPE , Response 1 0.11873 0.02427
Class 1, ABRAPE , Response 2 0.88127 0.02427
Class 2, ABANY , Response 1 0.07106 0.01070
Class 2, ABANY , Response 2 0.92894 0.01070
Class 2, ABDEFECT, Response 1 0.82144 0.01779
Class 2, ABDEFECT, Response 2 0.17856 0.01779
Class 2, ABHLTH , Response 1 0.98343 0.00636
Class 2, ABHLTH , Response 2 0.01657 0.00636
Class 2, ABNOMORE, Response 1 0.07275 0.01115
Class 2, ABNOMORE, Response 2 0.92725 0.01115
Class 2, ABPOOR , Response 1 0.10716 0.01268
Class 2, ABPOOR , Response 2 0.89284 0.01268
Class 2, ABRAPE , Response 1 0.86565 0.01527
Class 2, ABRAPE , Response 2 0.13435 0.01527
Class 3, ABANY , Response 1 0.91439 0.01115
Class 3, ABANY , Response 2 0.08561 0.01115
Class 3, ABDEFECT, Response 1 0.99615 0.00245
Class 3, ABDEFECT, Response 2 0.00385 0.00245
Class 3, ABHLTH , Response 1 0.99864 0.00150
Class 3, ABHLTH , Response 2 0.00136 0.00150
Class 3, ABNOMORE, Response 1 0.96614 0.00779
Class 3, ABNOMORE, Response 2 0.03386 0.00779
Class 3, ABPOOR , Response 1 0.93967 0.00941
Class 3, ABPOOR , Response 2 0.06033 0.00941
Class 3, ABRAPE , Response 1 0.99595 0.00265
Class 3, ABRAPE , Response 2 0.00405 0.00265

Significance tests for removal of predictors
Type III, Wald (based on estimated covariance matrix):

Chi.Sq DF Signif
(Intercept) 52.1680 2 0.000
SEXMALE 4.5463 2 0.103
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Notice that the logistic coe�cients for the reference class, which is now Class 1, have been set
to zero. The covariate SEX is a factor and has been expressed as a dummy indicator SEXMALE,
de�ned as 1 if SEX==MALE and 0 if SEX==FEMALE. At the bottom of the summary output is a
table that reports test statistics and p-values for the signi�cance of each covariate. The test
for SEXMALE has two degrees of freedom, because with three classes the e�ect of SEXMALE
is expressed with two logistic coe�cients. This is a Wald test based on the approximation
(�̂� �) � N(0; V (�̂)). Notice that this p-value of 0.103 is very close to the one we reported
in Section 4.4 where we used the lca function to test whether the class prevalences varied
by SEX. That was a likelihood-ratio test, and with large samples the results from Wald and
likelihood-ratio procedures should be similar. We can also perform a likelihood-ratio test in
lcacov by �tting the model with and without the covariate and applying compare.fit.

> fit0 <- lcacov( cbind(ABANY,ABDEFECT,ABHLTH,ABNOMORE,ABPOOR,ABRAPE) ~ 1,
+ data=abortion, nclass=3, reference=3, flatten.rhos=1, stabilize.alphas=1)
> compare.fit(fit, fit0)
$Chi.Sq
[1] 4.607716

$df
[1] 2

$p
[1] 0.0998728

6 Accounting for complex survey designs

6.1 Survey weights

Data from surveys with complex sampling designs are usually accompanied by weights. The
weight for individual i , which we denote by wi , may be regarded as the number of popu-
lation individuals represented by the given sampled individual. If individuals were sampled
with unequal probabilities (i.e., if some groups were oversampled), modeling procedures that
ignore the weights can lead to biased estimates of parameters for the population of interest.
Modeling procedures in this LCCA package allow the user to supply weights. If weights are
included, the procedure will compute pseudo-maximum likelihood (PML) estimates (Skinner,
1989; Pfe�erman, 1993), which maximize the likelihood for a pseudo-population in which
individual i has been \cloned" wi times. PML estimation is formally equivalent to treating
wi as if it were a frequency fi in an aggregated dataset. For computing standard errors, how-
ever, survey weights should not be treated as frequencies. Standard errors require additional
information about the design which is not conveyed through the weights.



LCCA Package for R, Version 1 41

6.2 The general class of with-replacement designs

Many complex survey designs can be viewed, at least approximately, as special cases of
the following general class. The population is divided into S � 1 sampling strata indexed by
s = 1; : : : ; S. Within stratum s, primary clusters c = 1; : : : ; Cs are selected with replacement.
Within primary cluster c in stratum s, individuals i = 1; : : : ; ncs are sampled by any method,
possibly in multiple stages, so that the total sample size is n =

∑S
s=1

∑Cs
c=1 ncs . In SUDAAN,

this is known as the \with replacement" (WR) design. This is also the design assumed by
the \svyreg" and \svylogit" commands in Stata. Design information is conveyed by three
user-supplied variables: the individual's survey weight, the cluster identi�er (if ncs > 1), and
the stratum identi�er (if S > 1). In most surveys, sampling is done without replacement
(WOR) to insure that no cluster or individual is selected twice. When sampling is WOR,
standard errors computed under a WR assumption tend to be conservative (Wolter, 2007).

Thus far, we have indexed the sampled individuals by a single subscript i = 1; : : : ; n,
which ignores strati�cation and clustering. With WR designs, we will sometimes index the
individuals by the combination of three subscripts i = 1; : : : ; ncs , c = 1; : : : ; Cs and s =
1; : : : ; S. Depending on the context, the survey weight for individual i will be denoted either
by wi or by wics . The estimated size of the population is N� =

∑n
i=1 wi .

6.3 Modeling a subpopulation

Analysts often �t models that describes only a subset of the full population (e.g., females).
With a simple random sample, we may simply discard the sampled individuals who are not in
this subpopulation and �t a model to the remaining individuals, because those who remain are
then a simple random sample of the subpopulation of interest. With a complex survey design,
however, discarding the individuals who do not belong to the subpopulation is not always
appropriate, because the overall design does not necessarily scale down to the subpopulation.
To obtain correct standard errors, we will in general need to retain the full sample of all
individuals whether or not they belong to the subpopulation. For each individual, we will
de�ne an indicator hi which is equal to 1 if the individual belongs to the subpopulation
and 0 otherwise. The number of sampled individuals in the subpopulation is

∑n
i=1 hi , and

the estimated size of the subpopulation is
∑n
i=1 hiwi . These indicators play a key role in

PML estimation for the subpopulation; contribution of the sampled individual to the pseudo-
loglikelihood function becomes the loglikelihood function for that individual multiplied by hiwi .

When �tting a model to a subpopulation, we may still want to de�ne groups g = 1; : : : ; G
within the subpopulation, e.g. for testing invariance of measurement across groups. If so, we
will have a grouping variable gi in addition to the subpopulation indicator hi . The number
of sampled individuals in group g within the subpopulation is then

∑n
i=1 I(gi = g)hi , and the

estimated size of group g in the subpopulation is
∑n
i=1 I(gi = g)hiwi .
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6.4 Rescaling of weights

Survey weights wi are typically very large. Analysts sometimes rescale weights so that they
add up to the sample size, which amounts to

replacing wi by wi �
(

n∑n
i=1 wi

)
;

or

replacing wi by wi �
( ∑n

i=1 hi∑n
i=1 hiwi

)
:

Rescaling the weights has no e�ect on PML estimates, nor on the standard errors computed
by the linearization (sandwich) method that we describe below. If attening or stabilizing
constants are used, however, then a given amount of prior information would be diluted if the
algorithm believed that the e�ective sample size was N�. For this reason, modeling functions
in this LCCA package internally rescale the weights so that the total sample weight in the
subpopulation of interest becomes equal to the actual sample size in the subpopulation. That
is, we multiply the user-supplied weight wi by the scaling factor

∑
i hi=

∑
i hiwi . Once again,

this rescaling has no e�ect on the PML estimates or standard errors. It simply ensures that,
if attening constants are used, a rescaling of the weights by the user prior to running the
program will not a�ect the results.

6.5 Standard errors for with-replacement designs

Linearized variance estimates under a WR design are obtained as follows. De�ne the pseudo-
score vector for individual i as

 i(�) =
@
@�
li(�);

where li(�) is individual i 's contribution to the pseudo-loglikelihood function, i.e., the loglike-
lihood for individual i multiplied by the weight wi and the subpopulation indicator hi . Using
the triple-subscript notation, let  ics(�) denote the pseudo-score vector for sampled individ-
ual i within cluster c within stratum s. If the PML estimate �̂ is not on a boundary of the
parameter space, it will solve

n∑

i=1
 i(�) =

S∑

s=1

Cs∑

c=1

ncs∑

i=1
 i(�) = 0:

The estimated covariance matrix for �̂ comes from a modi�ed sandwich formula,

V (�̂) �
(
�

n∑

i=1
 0i

)�1



S∑

s=1

Cs∑

c=1

(
 cs � � s

) (
 cs � � s

)T






(
�

n∑

i=1
 0i

)�1


T

;

where  cs =
∑ncs
i=1 ics is the total score within cluster c in stratum s, � s = C�1

s
∑Cs
c=1 cs is

the average of the cluster totals within stratum s,

 0i =
@
@�T

 i(�)
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is the contribution of individual i to the matrix of second derivatives, and all functions of the
unknown parameters are evaluated at � = �̂. If attening or stabilizing constants are being
used, the inner part of the sandwich does not change; only the outer part (the \bread")
changes to (

�
n∑

i=1
 0i � q00(�)

)�1

;

where q00(�) is the Hessian of the penalty function q with respect to �.

To compute standard errors for the marginal class prevalences in a model with covariates,
we follow a procedure analogous to that described in Section 5.4. The bread of the augmented
sandwich formula (14) is unchanged, and the meat of the augmented sandwich becomes

S∑

s=1

Cs∑

c=1

(
 �cs � � �s

) (
 �cs � � �s

)T
;

where  �cs =
∑ncs
i=1 

�
ics and � �s = C�1

s
∑Cs
c=1 

�
cs .

6.6 Testing nested hypotheses

When building latent-class models, we may want to test hypotheses about multiple parame-
ters. When a grouping variable is present, for example, we may wish to test for invariance of
the �'s across groups. Asparouhov and Muth�en (2005) derive a corrected likelihood-ratio test
(LRT) statistic for PML estimation with survey data which is similar to the robust chi-square
statistics of Satorra and Bentler (1988) and Yuan and Bentler (2000). Let l 0 and l1 denote
the maximized values of the pseudo-loglikelihood function under the null and alternative hy-
potheses, and let d 0 and d1 denote the number of free parameters estimated under the two
models. The design-corrected LRT statistic is c � 2(l1 � l 0), where

c =
d1 � d 0

tr(G1)� tr(G0)
;

and

GA =
(
�

n∑

i=1
 0i

)�1



S∑

s=1

Cs∑

c=1

(
 cs � � s

) (
 cs � � s

)T



is the sandwich bread multiplied by the sandwich meat under Model A = 0; 1. The corrected
LRT statistic is distributed as �2

d1�d 0
under the null hypothesis provided that the geometric

conditions for the usual LRT hold. For example, the null hypothesis must not be located on
a boundary of the parameter space. With or without a design correction, the LRT should
not be used to compare models with di�erent numbers of classes, because in that case the
conditions necessary for an asymptotic chi-square distribution are violated.
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6.7 Survey features of the LCCA package

All of the modeling functions in this package (lca, lcacov, lcca) will compute PML esti-
mates and standard errors for WR survey designs. In each case, information about the design
is conveyed through three optional arguments: weights, clusters, and strata.

� The weights argument should be a numeric variable containing sampling weights. The
scaling of these weights is arbitrary.

� The clusters argument should be an integer or factor variable containing sampling
cluster identi�ers.

� The strata argument should be an integer or factor variable containing sampling stra-
tum identi�ers. It is understood that clusters are nested within strata, so clusters with
the same identi�er from di�erent strata are known to be di�erent.

� Weights should not be confused with frequencies as supplied by the argument freq,
because they have di�erent meanings. A frequency of 10 indicates that ten individuals in
the sample exhibited the given pattern of responses, but a survey weight of 10 indicates
that one sampled individual is representing ten individuals in the population. The same
variable supplied as freq or weights will lead to identical estimates, but the standard
errors may be drastically di�erent. You cannot supply both freq and weights in the
same function call. For this reason, data from a survey with unequal probabilities of
selection must be supplied in disaggregated form.

� If weights is supplied, then the data are assumed to come from a WR design, and
the se.method option is automatically set to "SANDWICH". The weights argument is
required for complex survey data; if weights=NULL, then clusters and strata will be
ignored.

� If clusters is not supplied, then each sampled individual is assumed to be a cluster.

� If strata is not supplied, then one stratum is assumed for the whole population.

Another optional argument, subpop, allows you to �t a model to a subpopulation when
weights is present. The subpop argument should be a logical variable whose elements are
TRUE for members of the subpopulation. If subpop is supplied and weights=NULL, individuals
outside of the subpopulation will be ignored when computing estimates and standard errors,
and the procedure will be identical to removing the extraneous individuals from the dataset
beforehand.

The result from a call to lca, lcacov, or lcca carries information about the sample
design. If you apply summary to one of these objects with the option show.data.model=TRUE
or show.all=TRUE, then information about the design will be displayed in the printed output.

Nested models �t to the same data may be compared with the function compare.fit. If
PML estimation was used to �t the models, then compare.fit will apply the design-corrected
likelihood-ratio procedure of Asparouhov and Muth�en (2005).
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6.8 Example: Recent smoking from NHANES

The National Health and Nutrition Examination Survey (NHANES) is conducted periodically
by the National Center for Health Statistics to assess the health and nutrional status of the
United States population. The dataset NHsmoking contains variables derived from 2005{
2006 NHANES pertaining to recent reported cigarette use. The help �le for this dataset is
shown below.

NHsmoking package:lcca R Documentation

Recent cigarette use from NHANES

Description:

This dataset was derived from the 2005-2006 National Health and
Nutrition Examination Survey (NHANES) and pertains to
self-reported recent smoking behavior for persons 12+ years old.

Usage:

NHsmoking

Format:

a data frame with 9,950 rows and 9 variables:

WTMEC2YR respondent's survey weight

SDMVPSU sampling pseudo-cluster for variance estimation,
nested within SDMVSTRA

SDMVSTRA sampling pseudo-stratum for variance estimation

RIDAGEYR respondent's age in years

SMQ680r Used tobacco/nicotine in last 5 days? (1=Yes, 2=No,
3=Not applicable because AGEYRS<12)

SMQ690Ar Used cigarettes in last 5 days? (1=Yes, 2=No,
3=Not applicable because SMQ680>r)

SMQ710r No. of days used cigarettes during last 5 days (1=1,
2=2, 3=3, 4=4, 5=5, 6=Not applicable because SMQ690Ar>1)

SMQ720r On days used, no. of cigarettes smoked per day
(1=1-4, 2=5-9, 3=10-19, 4=20+, 5=Not applicable because
SMQ690Ar>1)

SMQ725r When did respondent smoke last cigarette? (1=today,
2=yesterday, 3=3-5 days ago, 4==Not applicable because
SMQ690Ar>1)
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Details:

An r at the end of the variable name indicates a recode of
an NHANES item. For example, SMQ690Ar is a recoded version
of the NHANES item SMQ690A. For exact definitions of NHANES
items, see the documentation for NHANES 2005-2006.

Recent smoking items are not applicable for participants with
RIDAGEYR<12.

The examination sequence created a nested skip pattern for
SMQ680r, SMQ690Ar, SMQ710r, SMQ720r, and
SMQ725r. If the response to the first question
(SMQ680r) ``Used tobacco/nicotine in last 5 days?'' was
``No,'' then the remaining items were skipped. If the response was
``Yes,'' the participant was asked whether he or she had used
cigarettes in the last 5 days (SMQ690Ar). If the response
was ``No,'' then the remaining items were skipped.

NHANES used a complex multistage sampling design, and design
information should be taken into account when computing estimates
and standard errors. The variable WTMEC2YR is the survey
weight that is intended for analyses involving recent smoking
items. The pseudo-cluster and pseudo-stratum identifiers
(SDMVPSU and SDMVSTRA) are not the actual sampling
strata and primary sampling units but masked versions that protect
respondents' confidentiality. For more information, see the
Analytic Guidelines for NHANES 2005-2006.

Source:

National Center for Health Statistics, Centers for Disease Control
and Prevention.

References:

For example analyses of this dataset using functions in the LCCA
package, see the manual _LCCA Package for R, Version 1_ in the
subdirectory doc.

When �tting latent-class models by PML, there is no obvious way to compare models
with di�erent numbers of classes, because the �t criteria AIC and BIC are not de�ned.
As a preliminary step, we suggest ignoring the weights and design information and �tting
exploratory models �rst by ML, understanding that that the parameter estimates may be
biased. Once a model has been selected, the design information can be reintroduced to
obtain more accurate estimates and standard errors.

Using the lca function, we �t models to the �ve recent-smoking items with varying
numbers of classes. Because the recent-smoking items did not apply to children under 12
years old, we used the subpop argument to remove those children from consideration. Note
that the �rst smoking item, SMQ680r, is equal to 1 or 2 for each member of the subpopulation
and 3 for each non-member. If we include this item in a latent-class model with the option
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subpop=(RIDAGEYR>=12), an error results because the lca function believes that the item
should have three levels, but no values of 3 are found in the subpopulation. We can avoid
this problem by recoding the 3's as NA.

Here is an example of a four-class model �t that uses the survey features.

> data(NHsmoking)

> # recode 3=Not Applicable as missing for the subpopulation
> NHsmoking$SMQ680r[ NHsmoking$SMQ680r==3 ] <- NA

> set.seed(53)
> fit4 <- lca( cbind(SMQ680r,SMQ690Ar,SMQ710r,SMQ720r,SMQ725r) ~ 1,
+ data=NHsmoking, nclass=4, flatten.gammas=5, flatten.rhos=1,
+ subpop=(RIDAGEYR>=12),
+ weights=WTMEC2YR, clusters=SDMVPSU, strata=SDMVSTRA)

> summary(fit4)

Summary of Latent-Class Analysis

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 34 iterations

Standard errors computed successfully.
Standard-error method: SANDWICH

Number of free parameters estimated: 63.00000000
Pseudo-loglikelihood: -7877.39791639
Pseudo-loglikelihood + penalty: -7987.47468076
Design-effect trace: 19.60787552

====================================================
Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2 3 4

0.7316 0.1719 0.0593 0.0371

Item-response probabilities (rhos):
Response category 1

Class: 1 2 3 4
SMQ680r 0.0001 0.9995 0.9987 0.9979
SMQ690Ar 0.0001 0.9994 0.9983 0.0014
SMQ710r 0.0000 0.0002 0.2344 0.0007
SMQ720r 0.0000 0.0512 0.6554 0.0008
SMQ725r 0.0001 0.9938 0.1096 0.0010

Response category 2
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Class: 1 2 3 4
SMQ680r 0.9999 0.0005 0.0013 0.0021
SMQ690Ar 0.0001 0.0003 0.0009 0.9972
SMQ710r 0.0000 0.0032 0.1849 0.0007
SMQ720r 0.0000 0.1540 0.1644 0.0008
SMQ725r 0.0001 0.0057 0.6812 0.0010

Response category 3
Class: 1 2 3 4

SMQ680r NA NA NA NA
SMQ690Ar 0.9999 0.0003 0.0009 0.0014
SMQ710r 0.0000 0.0038 0.1696 0.0007
SMQ720r 0.0000 0.3070 0.1188 0.0008
SMQ725r 0.0001 0.0002 0.2085 0.0010

Response category 4
Class: 1 2 3 4

SMQ680r NA NA NA NA
SMQ690Ar NA NA NA NA
SMQ710r 0.0000 0.0004 0.3608 0.0007
SMQ720r 0.0000 0.4876 0.0609 0.0008
SMQ725r 0.9998 0.0002 0.0007 0.9969

Response category 5
Class: 1 2 3 4

SMQ680r NA NA NA NA
SMQ690Ar NA NA NA NA
SMQ710r 0.0000 0.9924 0.0499 0.0007
SMQ720r 0.9998 0.0002 0.0005 0.9967
SMQ725r NA NA NA NA

Response category 6
Class: 1 2 3 4

SMQ680r NA NA NA NA
SMQ690Ar NA NA NA NA
SMQ710r 0.9998 0.0002 0.0004 0.9965
SMQ720r NA NA NA NA
SMQ725r NA NA NA NA

Examining the �-parameters, we see that this four-class solution has an appealing interpre-
tation. Class 1 (estimated to be 73.2% of the subpopulation) contains those who did not
use nicotine during the last �ve days (SMQ680r==2). Class 3 (3.7%) contains those who
did use nicotine during the last �ve days but did not smoke cigarettes (SMQ680r==1 and
SMQ690Ar==2). Class 2 (17.2%) and Class 3 (5.9%) contain those who did used cigarettes
during the last �ve days, but Class 2 used them every day (SMQ710r==5) and in larger quan-
tities (higher values of SMQ720r) than Class 3.

When sample design information is taken into account, standard errors for the estimated
parameters usually become larger. Here are the standard errors for the class prevalences based
on the WR design:

> fit4$se.gamma
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Group 1
Class 1 0.008886725
Class 2 0.007571642
Class 3 0.002913968
Class 4 0.002093518

And here are the standard errors computed without the design information:

> set.seed(53)
> fit <- lca( cbind(SMQ680r,SMQ690Ar,SMQ710r,SMQ720r,SMQ725r) ~ 1,
+ data=NHsmoking, nclass=4, flatten.gammas=5, flatten.rhos=1,
+ subpop=(RIDAGEYR>=12))

> fit$se.gamma
Group 1

Class 1 0.005167176
Class 2 0.004303614
Class 3 0.003061122
Class 4 0.002176946

> fit4$se.gamma/fit$se.gamma
Group 1

Class 1 1.7198419
Class 2 1.7593685
Class 3 0.9519282
Class 4 0.9616764

Using the design information, the standard errors for the two largest classes inated by about
70%.

7 Latent-class causal analysis

7.1 Notation and assumptions

Rubin (1974) introduced a framework and notation for causal inference in nonrandomized
studies in which each individual has an outcome for each treatment that could be received.
The framework is often called the Rubin causal model (Holland, 1986) or the potential-
outcomes model (Rubin, 2005). In previous applications of this model, the putative cause
was assumed to be directly observed. Kang and Schafer (submitted) have extended it to
situations where the treatment is a latent class. The model for latent-class causal analysis
(LCCA) can be described as follows.

Treatment. For each individual i = 1; : : : ; n, we suppose that Ti is a latent polytomous
treatment variable taking possible values c = 1; 2; : : : ; C.

Items measuring the treatment. The treatment is measured by a set of manifest polyto-
mous items Ui = (Ui1; Ui2; : : : ; UiM), where Uim takes possible responses r = 1; : : : ; rm. The
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Figure 3: Latent-class causal analysis.

realized value of Ui is denoted by u i = (ui1; ui2; : : : ; uiM). We will allow an arbitrary subset
of these items to be missing at random, and we partition the items as Ui = (Ui ;obs ;Ui ;mis),
where Ui ;obs is the observed part and Ui ;mis is the missing part. Similarly, partition u i as
(u i ;obs ; u i ;mis).

Potential outcomes. Let Y i = (Yi(1); Yi(2); : : : ; Yi(C))T denote a vector of potential out-
comes, where Yi(c) is the outcome that would be realized if Ti = c . The observed outcome
for individual i is Yi ;obs = Yi(Ti), and its realized value is yi ;obs . In typical applications, Yi ;obs
will be measured later than Ui , and some individuals may drop out before Yi ;obs can be seen.
If so, we will suppose that Yi ;obs is missing at random for these individuals, and we will still
make use of the information in Ui ;obs to estimate the parameters of the treatment model.

Covariates. Let Xi = (Xi1; Xi2; : : : ; Xip)T denote a column vector of covariates that are
completely observed. These covariates will not be explicitly modeled. The realized value of
Xi is x i = (xi1; xi2; : : : ; xip)T .

Key assumptions. LCCA makes three key assumptions about the relationships among these
variables.

� Unconfounded treatment assignment: The treatment Ti is conditionally independent of
the potential outcomes Y i given the covariates x i .

� Unconfounded measurement: The items Ui are conditionally independent of the poten-
tial outcomes Y i given the treatment Ti .

� Local independence. The items Ui1; : : : ; UiM are mutually independent given Ti .

A graphical representation of these relationships is shown in Figure 3. Under these assump-
tions, the joint distribution of Ti , Ui and Y i given Xi factors as

Pr(Ti ;Ui ; Y i jXi) = Pr(Ti jXi)
( M∏

m=1
Pr(Uim jTi)

)
Pr(Y i jXi): (17)

Model parameters. Denote the measurement parameters by

�mr jc = Pr(Uim = r jTi = c)
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and the class membership probabilities by

ic = Pr(Ti = c jXi = x i):

We assume that the 's follow a baseline-category logistic model,

ic =
exp

(
x i T�c

)

∑C
c 0=1 exp (x i T�c 0)

; (18)

where �c = (�1c ; �2c ; : : : ; �pc)T , c = 1; : : : ; C are vectors of coe�cients to be estimated
(de�ne �c = 0 for the baseline class). Finally, we suppose that

Y i jXi = x i � N(�Tx i ; � ); (19)

where � is a (p � C) matrix of coe�cients to be estimated, and � is a C � C covariance
matrix. The cth column of � will be noted by �c = (�1c ; �2c ; : : : ; �pc)T . The diagonal
elements of � are �2

c for c = 1; : : : ; C, and the o�-diagonal elements are �cc 0. The correlation
coe�cients rcc 0 = �cc 0=

√
�2
c�2

c 0 are strictly inestimable given the observed data and will need
to be set to �xed values. However, inferences about average treatment e�ects are insensitive
to assumptions about these correlations.

In equations (18) and (19), we have supposed that the same vector of covariates x i is
used for predicting the treatment status in (18) and the potential outcomes in (19). But
these vectors need not be the same. In typical applications, they will be drawn from the
same pool of variables Xi1; : : : ; Xip, but di�erent subsets of covariates may appear in the two
parts of the model, perhaps with di�erent transformations or interactions. To allow for this
possibility, individual covariates in models (18) and (19) will be denoted by x (�)

i j and x (�)
i j ,

respectively.

7.2 Likelihood function

Collect the free parameters to be estimated into a single parameter vector �. The elements
of � consist of

� the nonredundant item-response probabilities, which are �mr jc for r = 1; : : : ; rm � 1,
m = 1; : : : ;M and c = 1; : : : ; C,

� the treatment-model coe�cients �jc for each class except the baseline,

� the outcome-model coe�cients �jc , and

� the residual variances �2
c , c = 1; : : : ; C.

The loglikelihood function to be maximized is l(�) =
∑n
i=1 li(�). If individual i remains

in the study long enough for Yi ;obs = yi ;obs to be seen, the individual's contribution to the
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loglikelihood is

li(�) = log
C∑

c=1





exp
(
x i T�c

)

∑C
c 0=1 exp (x i T�c 0)









∏

m2obsi

rm∏

r=1
�I(uim=r)
mr jc





� (
2��2

c

)�1=2
exp

{
� 1

2�2
c

(yi ;obs � x i T�c)2

}
; (20)

where obs i denotes the subset of f1; 2; : : : ;Mg corresponding to the items that are observed
for individual i . If the individual drops out prior to realization of Yi ;obs , then the loglikelihood
contribution becomes

li(�) = log
C∑

c=1





exp
(
x i T�c

)

∑C
c 0=1 exp (x i T�c 0)









∏

m2obsi

rm∏

r=1
�I(uim=r)
mr jc



 : (21)

To streamline the notation, we rewrite (20){ (21) as li(�) = log
∑C
c=1 ic Pic gic , where

Pic =
∏

m2obsi

rm∏

r=1
�I(uim=r)
mr jc

and

gic = exp
{
� 1

2
log(2�)� 1

2
log�2

c � 1
2�2

c
(yi ;obs � x i T�c)2

}

if Yi ;obs is seen; if Yi ;obs is unseen, de�ne gic = 1. Given the observed data, the posterior
probability that subject i belongs to class Ti = c is then

�ic =
ic Pic gic∑C

c 0=1 ic 0 Pic 0 gic 0 : (22)

7.3 Estimation procedure

To estimate �, we apply an EM algorithm that regards Ti as \missing data." De�ne the
augmented data for individual i as

� Xi , Ui ;obs , Ti and Yi ;obs if the individual remains in the study long enough for Yi ;obs to
be seen, and as

� Xi , Ui ;obs and Ti if the individual drops out before Yi ;obs can be seen.

Individual's i 's contribution to the augmented-data likelihood function is

L�i (�) = Pr(Ui ;obs = u i ;obs ; Yi ;obs = yi ;obs ; Ti jXi)

=
C∏

c=1
I(Ti=c)
ic �

C∏

c=1

∏

m2obsi

rm∏

r=1
�I(Ti=c) I(uim=r)
mr jc

�
C∏

c=1
exp

{
I(Ti = c)

[
� 1

2
log(2��2

c) � 1
2�2

c
(yi ;obs � x i T�c)2

] }
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if Yi ;obs is seen, and

L�i (�) = Pr(Ui ;obs = u i ;obs ; Ti jXi)

=
C∏

c=1
I(Ti=c)
ic �

C∏

c=1

∏

m2obsi

rm∏

r=1
�I(Ti=c) I(uim=r)
mr jc

if Yi ;obs is unseen. The augmented-data loglikelihood is l�(�) =
∑n
i=1 l�i (�), where l�i (�) =

logL�i (�). De�ne Um as the subset of f1; : : : ; ng corresponding to the individuals for whom
Uim is seen. Similarly, de�ne Y as the subset of f1; : : : ; ng corresponding to the individuals
for whom Yi ;obs is seen. The augmented-data loglikelihood can then be written as the sum
of three distinct terms,

l�(�) =
n∑

i=1

C∑

c=1
I(Ti = c) log ic

+
C∑

c=1

M∑

m=1

∑

i2Um

rm∑

r=1
I(Ti = c) I(uim = r) log �mr jc

+
C∑

c=1

∑

i2Y
I(Ti = c)

{
� 1

2
log(2��2

c) � 1
2�2

c
(yi ;obs � x i T�c)2

}
: (23)

To perform the E-step of the EM algorithm, we replace each missing indicator function
I(Ti = c) in l�(�) by the posterior probability �ic , where the latter is computed under the
current estimated value of �. The M-step separates into three parts corresponding to the
three terms in (23). The second term,

C∑

c=1

M∑

m=1

∑

i2Um

rm∑

r=1
�ic I(uim = r) log �mr jc ;

is maximized at
�̂mr jc =

∑
i2Um �ic I(uim = r)∑

i2Um �ic
(24)

for r = 1; : : : ; rm, m = 1; : : : ;M and c = 1; : : : ; C. The third term,

C∑

c=1

∑

i2Y
�ic

{
� 1

2
log(2��2

c) � 1
2�2

c
(yi ;obs � x i T�c)2

}
;

is maximized at

�̂c =


∑

i2Y
�icx ix i T



�1 

∑

i2Y
�icx iyi ;obs


 ; (25)

�̂2
c =


∑

i2Y
�ic



�1 ∑

i2Y
�ic (yi ;obs � x i T �̂c)2 (26)
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for c = 1; : : : ; C. The maximizer of the �rst term cannot in general be written in closed
form, but it may be computed iteratively by a Newton-Raphson procedure. Let � denote the
vector containing the coe�cients �jc for all classes c = 1; : : : ; C except the baseline class.
The function to be maximized is Q�(�) =

∑n
i=1

∑C
c=1 �ic log ic , where the ic 's are given by

(18) and the �ic 's are regarded as �xed. Each cycle of the Newton-Raphson procedure can
be written as

�(new) = �(old) +
[�Q00�(�(old))

]�1
Q0�(�(old));

where Q0�(�) is the vector of �rst derivatives of Q�(�) with respect to �, and Q00�(�) is the
matrix of second derivatives. The elements of Q0�(�) are

@
@�jc

Q� =
n∑

i=1
(�ic � ic) x (�)

i j ;

and the elements of Q00�(�) are

@2

@�jc@�j 0c 0
Q� = �

n∑

i=1
ic [ I(c = c 0) � ic 0 ] x

(�)
i j x (�)

i j 0 :

The EM algorithm allows us to compute the ML estimate �̂, but it does not produce
standard errors. The covariance matrix for �̂ can be estimated by

V̂ (�̂) =
[
�

n∑

i=1
l 00i (�̂)

]�1

;

where l 00i (�) denotes the matrix of second derivatives of the loglikelihood for case i .

7.4 Estimating average treatment e�ects

Although the elements of � may be interesting, the average treatment e�ects are contrasts
among the means of the potential outcomes averaged over the covariates. For causal infer-
ence, we need to estimate the vector of marginal means for the entire population, � = E(Y i),
or the vector of marginal means within a given treatment class, �(d) = E(Y i jTi = d). These
parameters are not functions of � alone, because our model has not said anything about
Pr(Xi) or Pr(Xi jTi = c). To avoid specifying a model for this possibly high-dimensional set
of covariates, we will employ the method of expected estimating functions.

If the potential outcomes Yi(c) were seen, we could consistently estimate �(c) =
E(Yi(c)) by n�1 ∑n

i=1 Yi(c), which may be regarded as the solution to the estimating equation
n∑

i=1
( Yi(c) � �(c) ) = 0: (27)

Similarly, if the Yi(c)'s and the Ti 's were seen, we could estimate �(c jd) = E(Yi(c) jTi = d)
by

∑n
i=1 I(Ti = d) Yi(c)=

∑n
i=1 I(Ti = d), which can be regarded as the solution to the

estimating equation
n∑

i=1
I(Ti = d) ( Yi(c) � �(c jd) ) = 0: (28)
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Because Yi(c) and Ti are unknown, we replace the estimating functions in these equations
by their expected values given the observed data under our latent-class model. That is, we
replace Yi(c) in (27), and I(Ti = d) and I(Ti = d) Yi(c) in (28), by their expected values
given Xi = x i , Ui ;obs = u i ;obs , and Yi ;obs = yi ;obs if the latter is seen. De�ne

ŷi(c j d) = E( Yi(c) jXi = x i ;Ui ;obs = u i ;obs ; Yi ;obs = yi ;obs ; Ti = d)

if Yi ;obs is seen for subject i , and

ŷi(c j d) = E( Yi(c) jXi = x i ;Ui ;obs = u i ;obs ; Ti = d)

otherwise. It can be shown that

ŷi(c j d) =





yi ;obs if Yi ;obs is seen and c = d ,

x i T�c +
(
�cd
�2
d

) (
yi ;obs � x i T�d

)
if Yi ;obs is seen and c 6= d , and

x i T�c if Yi ;obs is unseen.

The expectations of Yi(c), I(Ti = d), and I(Ti = d) Yi(c) given the observed data are
then

∑C
c 0=1 �ic 0 ŷi(c j c 0), �id and �id ŷi(c j d), respectively. Plugging these expressions into

(27){(28) and solving the equations gives

�̂(c) =
1
n

n∑

i=1

C∑

c 0=1
�ic 0 ŷi(c j c 0) (29)

and
�̂(c j d) =

∑n
i=1 �id ŷi(c j d)∑n

i=1 �id
: (30)

When computing (29) and (30), we replace the unknown parameters in � by their ML esti-
mates.

A covariance matrix for �̂ = (�̂(1); : : : ; �̂(C))T may be estimated as follows. De�ne
!i = (!i(1); : : : ; !i(C))T , where

!i(c) =
C∑

c 0=1
�ic 0 ŷi(c j c 0) � �(c)

is the contribution of subject i to the expected estimating function for �(c). De�ne

Si = l 0i (�) =
@
@�
li(�)

as the vector of derivatives of the loglikelihood contribution. The combined estimate �̂ =
(�̂
T
; �̂T )T can be regarded as the solution to stacked estimating equations

∑n
i=1 i = 0,

where  i = (Si T ;!Ti )T . Under mild regularity conditions, we have
p
n(�̂ � �) ! N(0;�),

where � = A�1BA�1T , A = �E(@ i=@�
T ) and B = E( i 

T
i ). An estimated covariance

matrix for �̂ is

V̂ (�̂) =
( n∑

i=1

@ i
@�T

)�1 ( n∑

i=1
 i 

T
i

) ( n∑

i=1

@ i
@�T

)�1T

; (31)
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where all functions on the right-hand side of (31) are evaluated at � = �̂. The matrix
@ i=@�

T has the form

@ i
@�T

=




l 00i (�) 0

@!i
@�T

@!i
@�T



:

An estimated covariance matrix for �̂(d) = (�̂(1jd); : : : ; �̂(Cjd))T may be computed in
a similar fashion. Regard �̂ = (�̂

T
; �̂T(d))T as the solution to stacked estimating equations∑n

i=1 i = 0, where  = (Si T ;!Ti(d))T , and !i(d) is the vector with elements

!i(c j d) = �id [ ŷi(c j d) � �(c j d) ]

for c = 1; : : : ; C. The estimated covariance matrix has the same form (31), but @ i=@�
T

now becomes

@ i
@�T

=




l 00i (�) 0

@!i(d)

@�T
@!i(d)

@�T(d)



:

7.5 Example: A simulated dieting study

Schafer and Kang (2008) presented a simulated observational study to assess the e�ect of
dieting on emotional distress among adolescent girls. Samples were drawn from an arti�cial
population of one million girls. Variables in this population resemble actual variables from the
�rst two waves of the National Longitudinal Study of Adolescent Health (Add Health) (Udry,
2003). However, no actual data from any Add Health participant appears in the population
or in the sample; all data were randomly generated from probability distributions estimated
from Add Health as described by Schafer and Kang (2008).

Observations for one sample of 6,000 girls from this population are provided in the
dataset diet. The variables included in this dataset are listed in Table 1. Dieters and
nondieters comprise about 20% and 80% of the population, respectively. The treatment
variable, a binary indicator of dieting at Wave I, was removed from the dataset and replaced
by three conditionally independent binary indicators U.1, U.2, and U.3, with endorsement
probabilities of 0.90, 0.85 and 0.80 for dieters and 0.10, 0.15 and 0.20 for nondieters. This
structure can be seen by �tting a latent class model with two classes to U.1, U.2, and U.3:

> data(diet)
> set.seed(78)
> fit <- lca(cbind(U.1,U.2,U.3) ~ 1, data=diet, nclass=2,
+ flatten.rhos=1, flatten.gammas=1)
> summary(fit, show.header=F, show.fit=F)
====================================================
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Table 1: Variables in the simulated dieting dataset.

Name Description

DISTRESS.1 Emotional distress score at Wave I

BLACK 1=Black, 0=otherwise

NBHISP 1=non-Black Hispanic, 0=otherwise

GRADE Grade in school at Wave I (7, . . . , 11)

SLFHLTH Self-rating of overall health (1=excellent, 2=very good,
3=good, 4=fair, 5=poor)

SLFWGHT Self-rating of weight (1=very underweight, 2=slightly under,
3=about right, 4=slightly over, 5=very over)

WORKHARD \When you get what you want, it's usually because you worked
hard for it" (1=strongly agree, . . . , 5=strongly disagree)

GOODQUAL \You have lots of good qualities" (1=strongly agree, . . . ,
5=strongly disagree)

PHYSFIT \You are physically �t" (1=strongly agree, . . . , 5=strongly
disagree)

PROUD \You have a lot to be proud of" (1=strongly agree, . . . ,
5=strongly disagree)

LIKESLF \You like yourself just the way you are" (1=strongly
agree, . . . , 5=strongly disagree)

ACCEPTED \You feel socially accepted" (1=strongly agree, . . . ,
5=strongly disagree)

FEELLOVD \You feel loved and wanted" (1=strongly agree, . . . ,
5=strongly disagree)

U.1 First binary indicator related to dieting

U.2 Second binary indicator related to dieting

U.3 Third binary indicator related to dieting

DISTRESS.2 Distress observed at Wave II
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Parameter estimates
====================================================

Class prevalences (gammas):
Class: 1 2

0.786 0.214

Item-response probabilities (rhos):
Response category 1

Class: 1 2
U.1 0.9008 0.1371
U.2 0.8503 0.1541
U.3 0.8128 0.2086

Response category 2
Class: 1 2

U.1 0.0992 0.8629
U.2 0.1497 0.8459
U.3 0.1872 0.7914

The response variable, DISTRESS.2, is a simulated measure of emotional distress at Wave II.
The remaining variables represent confounders recorded at Wave I which inuence girls' emo-
tional distress and their propensities to diet. Adjusting for these confounders is essential for
estimating the e�ects of dieting on emotional distress. In particular, it is essential to control
for DISTRESS.1, because this measure is strongly related to dieting and to DISTRESS.2

The relationships between dieting and the confounders can be described by regressing
the latent-class variable on the confounders:

> set.seed(25)
> fit <- lcacov( cbind(U.1,U.2,U.3) ~ DISTRESS.1 + BLACK + NBHISP +
+ GRADE + SLFHLTH + SLFWGHT + WORKHARD + GOODQUAL + PHYSFIT +
+ PROUD + LIKESLF + ACCEPTED + FEELLOVD,
+ data=diet, nclass=2, flatten.rhos=1, stabilize.alphas=1)
> summary(fit, show.header=F, show.fit=F)
====================================================
Parameter estimates
====================================================

Class prevalences (marginal gammas):
Class: 1 2

0.7935 0.2065

Item-response probabilities (rhos):
Response category 1

Class: 1 2
U.1 0.8993 0.1151
U.2 0.8459 0.1460
U.3 0.8072 0.2081

Response category 2
Class: 1 2
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U.1 0.1007 0.8849
U.2 0.1541 0.8540
U.3 0.1928 0.7919

Logistic regression coefficients (alphas):

, , Class 1/1

Estimate Std.Err Z.ratio Signif
(Intercept) 0 0 NaN NaN
DISTRESS.1 0 0 NaN NaN
BLACK 0 0 NaN NaN
NBHISP 0 0 NaN NaN
GRADE 0 0 NaN NaN
SLFHLTH 0 0 NaN NaN
SLFWGHT 0 0 NaN NaN
WORKHARD 0 0 NaN NaN
GOODQUAL 0 0 NaN NaN
PHYSFIT 0 0 NaN NaN
PROUD 0 0 NaN NaN
LIKESLF 0 0 NaN NaN
ACCEPTED 0 0 NaN NaN
FEELLOVD 0 0 NaN NaN

, , Class 2/1

Estimate Std.Err Z.ratio Signif
(Intercept) -6.2055000 0.390970 -15.872 0.0000
DISTRESS.1 0.3936000 0.097921 4.020 0.0001
BLACK -0.5767800 0.109550 -5.265 0.0000
NBHISP -0.1733000 0.113320 -1.529 0.1262
GRADE 0.1016400 0.029980 3.390 0.0007
SLFHLTH -0.0789000 0.048764 -1.618 0.1057
SLFWGHT 1.2013000 0.064942 18.498 0.0000
WORKHARD -0.1698400 0.047935 -3.543 0.0004
GOODQUAL -0.2116000 0.081894 -2.584 0.0098
PHYSFIT 0.0332490 0.055204 0.602 0.5470
PROUD 0.0022100 0.083225 0.027 0.9788
LIKESLF 0.2662100 0.049560 5.371 0.0000
ACCEPTED -0.0925140 0.055187 -1.676 0.0937
FEELLOVD 0.0014553 0.068451 0.021 0.9830

The most powerful predictor of dieting is SLFWGHT, but many other variables, including
DISTRESS.1, are signi�cantly related to dieting as well.

7.6 Using the lcca function

The syntax of the lcca function is shown below.

lcca(formula.treatment, formula.outcome, data, nclass = 2,
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reference = 1, iseeds = NULL, iter.max = 5000, tol = 1e-06,
starting.values = NULL, flatten.rhos = 0, stabilize.alphas = 0,
flatten.gammas = 0, se.method = "STANDARD", r.matrix = NULL,
freq, weights, clusters, strata, subpop)

The major di�erence between this function and lcacov is that this function requires two
model formulas.

� The �rst argument, formula.treatment, is a formula like the one required for lcacov.
The expression on the left-hand side of ~ is a matrix of polytomous variables that
meassure the latent class, and the right-hand side speci�es the covariates used to
predict the latent class.

� The second argument, formula.outcome, should have the form Y ~ X1 X2 + ...+.
The variable on the left-hand side of ~ is the numeric outcome variable, and the terms
on the right-hand side are covariates predicting the outcome. Missing values in the
outcome are allowed and should be conveyed by the R missing value code NA.

An application of this function to the dieting data is shown below.

> set.seed(25)
> fit <- lcca(
+ formula.treatment = cbind(U.1,U.2,U.3) ~ DISTRESS.1 + BLACK +
+ NBHISP + GRADE + SLFHLTH + SLFWGHT + WORKHARD + GOODQUAL +
+ PHYSFIT + PROUD + LIKESLF + ACCEPTED + FEELLOVD,
+ formula.outcome = DISTRESS.2 ~ DISTRESS.1 + BLACK +
+ NBHISP + GRADE + SLFHLTH + SLFWGHT + WORKHARD + GOODQUAL +
+ PHYSFIT + PROUD + LIKESLF + ACCEPTED + FEELLOVD,
+ data=diet, nclass=2, flatten.rhos=1, stabilize.alphas=1)
> summary(fit)

Summary of Latent-Class Causal Analysis

====================================================
Fit statistics
====================================================

The EM algorithm CONVERGED in: 73 iterations

Standard errors computed successfully.
Standard-error method: STANDARD

Number of free parameters estimated: 50.00000
Loglikelihood: -12035.26553
Loglikelihood + penalty: -12050.05682
-2 * Loglikelihood: 24070.53105
AIC (smaller is better): 24170.53105
BIC (smaller is better): 24505.50679

====================================================
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Parameter estimates
====================================================

Class prevalences (marginal gammas):
Class: 1 2

0.7935 0.2065

Item-response probabilities (rhos):
Response category 1

Class: 1 2
U.1 0.8990 0.1158
U.2 0.8459 0.1458
U.3 0.8072 0.2080

Response category 2
Class: 1 2

U.1 0.1010 0.8842
U.2 0.1541 0.8542
U.3 0.1928 0.7920

Treatment model coefficients (alphas):

, , Class 1/1

Estimate Std.Err Z.ratio Signif
(Intercept) 0 0 NaN NaN
DISTRESS.1 0 0 NaN NaN
BLACK 0 0 NaN NaN
NBHISP 0 0 NaN NaN
GRADE 0 0 NaN NaN
SLFHLTH 0 0 NaN NaN
SLFWGHT 0 0 NaN NaN
WORKHARD 0 0 NaN NaN
GOODQUAL 0 0 NaN NaN
PHYSFIT 0 0 NaN NaN
PROUD 0 0 NaN NaN
LIKESLF 0 0 NaN NaN
ACCEPTED 0 0 NaN NaN
FEELLOVD 0 0 NaN NaN

, , Class 2/1

Estimate Std.Err Z.ratio Signif
(Intercept) -6.24290000 0.392030 -15.925 0.0000
DISTRESS.1 0.41078000 0.098307 4.179 0.0000
BLACK -0.56539000 0.109510 -5.163 0.0000
NBHISP -0.17070000 0.113400 -1.505 0.1323
GRADE 0.10105000 0.030006 3.368 0.0008
SLFHLTH -0.07922600 0.048752 -1.625 0.1041
SLFWGHT 1.20250000 0.065048 18.487 0.0000
WORKHARD -0.16582000 0.047884 -3.463 0.0005
GOODQUAL -0.20261000 0.081884 -2.474 0.0133
PHYSFIT 0.03093800 0.055249 0.560 0.5755
PROUD 0.00014289 0.083242 0.002 0.9986
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LIKESLF 0.26926000 0.049580 5.431 0.0000
ACCEPTED -0.09375700 0.055247 -1.697 0.0897
FEELLOVD 0.00370590 0.068398 0.054 0.9568

Outcome model coefficients (betas):

, , Class 1

Estimate Std.Err Z.ratio Signif
(Intercept) 0.00540790 0.0472680 0.114 0.9089
DISTRESS.1 0.52183000 0.0147990 35.261 0.0000
BLACK 0.07083700 0.0133350 5.312 0.0000
NBHISP 0.02526100 0.0162640 1.553 0.1204
GRADE 0.00212620 0.0040005 0.531 0.5951
SLFHLTH 0.02713900 0.0067815 4.002 0.0001
SLFWGHT -0.00030758 0.0078784 -0.039 0.9689
WORKHARD -0.01759300 0.0063674 -2.763 0.0057
GOODQUAL 0.01991300 0.0111830 1.781 0.0750
PHYSFIT 0.00336770 0.0078593 0.428 0.6683
PROUD 0.03497500 0.0114770 3.047 0.0023
LIKESLF 0.01863700 0.0074141 2.514 0.0119
ACCEPTED 0.01535400 0.0078433 1.958 0.0503
FEELLOVD 0.04224400 0.0096847 4.362 0.0000

, , Class 2

Estimate Std.Err Z.ratio Signif
(Intercept) -0.0480640 0.1235900 -0.389 0.6974
DISTRESS.1 0.5085200 0.0306810 16.575 0.0000
BLACK 0.0922290 0.0358910 2.570 0.0102
NBHISP 0.0438060 0.0357110 1.227 0.2199
GRADE 0.0029893 0.0094719 0.316 0.7523
SLFHLTH -0.0066383 0.0154600 -0.429 0.6677
SLFWGHT 0.0097890 0.0208250 0.470 0.6383
WORKHARD 0.0121650 0.0158060 0.770 0.4415
GOODQUAL 0.0268440 0.0252990 1.061 0.2887
PHYSFIT -0.0151720 0.0176360 -0.860 0.3896
PROUD 0.0505120 0.0261750 1.930 0.0536
LIKESLF 0.0410560 0.0153050 2.683 0.0073
ACCEPTED 0.0175930 0.0170350 1.033 0.3017
FEELLOVD 0.0258760 0.0219800 1.177 0.2391

Outcome model residual variances (sigma2):
Estimate Std.Err

Class 1 0.13569 0.0030700
Class 2 0.15925 0.0081499

====================================================
Estimated potential-outcome means
====================================================

Average potential outcomes:
Estimate Std.Err

Class 1 0.65622 0.0071832
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Class 2 0.65319 0.0219230

Average potential outcomes within classes:
, , Class 1

Estimate Std.Err
Class 1 0.64067 0.0074461
Class 2 0.63757 0.0241720

, , Class 2

Estimate Std.Err
Class 1 0.71596 0.013062
Class 2 0.71320 0.018385

====================================================
Estimated average treatment effects
====================================================

Average treatment effects:
Estimate Std.Err Z.ratio Signif

Class 2 minus Class 1 -0.0030304 0.024123 -0.126 0.9

Average treatment effects within classes:
, , Class 1

Estimate Std.Err Z.ratio Signif
Class 2 minus Class 1 -0.003101 0.026654 -0.116 0.9074

, , Class 2

Estimate Std.Err Z.ratio Signif
Class 2 minus Class 1 -0.0027587 0.018968 -0.145 0.8844

The estimated average e�ects of dieting on emotional distress are essentially zero in the
overall population and in each treatment class.
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