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Inference in Latent Transition Models:
Results from a Simulation Study

Latent transition analysis (LTA) is a method for estimating and testing stage-sequential
models of development in longitudinal data. LTA uses an EM algorithm to obtain maximum
likelihood estimates for all parameters. Because standard errors are not a byproduct of the EM
algorithm, this method does not allow the user to conduct hypothesis tests. Recently, a data
augmentation procedure has been added to LTA; this procedure uses the data, the LTA model,
and the EM estimates to multiply impute the latent variables. The within-imputation and
between-imputation variability can then be combined to yield an overall estimate of the standard
error for each parameter. This procedure provides information about the variability of point
estimates and enables the user to conduct hypothesis tests.

The purpose of this technical report is to record how parameter estimates and confidence
intervals based on data augmentation compare to known parameter values for a particular latent
transition model. A simulation was conducted in order to assess the bias of parameter estimates,
the bias of their associated standard errors, and the coverage of the associated 95% confidence
intervals. We investigated conditions under which the data augmentation procedure can
successfully recover parameters by varying sample size, the strength of the measurement

parameters, the presence of missing data, and the number of imputations.

Latent Transition Analysis
Latent class analysis (Goodman, 1974) uses the EM algorithm to fit latent class models to

data, where a categorical latent variable is indicated by multiple categorical manifest items. This
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method yields estimates of the probability of class membership, as well as the amount of
measurement error associated with each indicator.

Latent transition analysis (LTA; Collins & Wugalter, 1992) extends latent class theory to
encompass multiple times of measurement, allowing the estimation of stage-sequential models of
development in longitudinal data. The prevalence of stages and incidence of stage transitions
over time are estimated using multiple categorical indicators of the latent dynamic variable
measured at each time. Consider for the purposes of this study a model for the onset bf
adolescent substance use for subjects measured in 9th and 10th grade. We could model the onset
process by following adolescents’ experimentation with alcohol, cigarettes, drunkenness, and
marijuana across these two years. A model of onset does not require all subjects to advance to
the most advanced stage; it is merely assumed that if they do, they follow a specified path. The
following presentation of the LTA mathematical model and the model used in the simulation
involve only a dynamic latent variable. LTA can, however, include both a dynamic and a static
latent variable (see Collins & Wugalter, 1992 for a presentation of this more general model).

The L.TA Mathematical Model

To aid explanation, the LTA mathematical model will be presented in terms of two times
of measurement and five manifest indicators of the latent status at each time. The model can be
directly extended to other latent transition problems. Let the first time of measurement be Time ¢
and the second be Time +1. Suppose also that the five manifest indicators of latent status are
Item 1 with i, i' = 1, ..., I response categories, Item 2 with j, j' = 1, ..., J response categories, and
so on, where i, j, k, /, and m refer to item responses at Time ¢ and 7', j', k', [, and m' refer to item

responses at Time +1. Let p = 1, ..., S denote the latent status at Time # and g = 1, ..., S the latent
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status at Time #+1. A response can then be represented by Y = {ij.k,[m,i’j k’,’;m’}, the vector of
responses to the five latent status indicators at Time ¢ and the five latent status indicators at Time
H+1.

There are three sets of parameters estimated in this model: § parameters, T parameters,
and p parameters. The estimated probability of having a particular response pattern is:
s s

P0)= 2 20 SoPuPiPupPiPu T PiPeuPPr

where

0, is the probability of being in latent status p;

Py, 18 the probability of response i to Item 1 at Time ¢z, given membership in latent status p at
Time ¢ (similarly, p,, represents the probability of response i’ to Item 1 at Time #+1, given
membership in latent status g at Time #+1); and

T, 18 the probability of membership in latent status g at Time #+1 given membership in latent
status p at Time ¢.

Data Augmentation and Multiple Imputation

The analyses presented here were performed using WinLL'TA 3.0, a new version of the
LTA program which includes the capability of estimating standard errors for each parameter.
The EM algorithm in LTA has been tested and applied extensively, but this study is the first to
investigate the performance of the new data augmentation feature of LTA.

Multiple imputation is a general approach to missing data problems that has been shown
to produce high quality estimates and reliable standard errors (Schafer, 1997). This approach to

missing data has been incorporated in the WinLTA program, where the latent variables are
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treated as missing data and multiply imputed. Multiple imputation employs data augmentation,
an iterative simulation procedure similar to the EM algorithm. It is important to note that the
current version of WinLTA uses a Jeffreys prior; the choice of the prior used in data
augmentation may have a strong impact on the results when the data supply little information.
This iterative procedure produces a sequence of plausible sets of LTA parameter estimates. Sets
spaced sufficiently apart, rather than consecutive ones, tend to represent independent draws of
parameters. Typically draws are spaced far enough apart if this distance equals the number of
iterations within which EM converged to the maximum likelihood estimates. Multiple draws of
LTA parameters, or imputations, are retained (five or ten draws, in this study) and analyzed as if
the latent variables are known. Parameter estimates and their standard errors are retained from
each imputation’s analysis, and are combined according to rules defined by Rubin (1987). The
resultant parameter estimates and their standard errors can then be used to describe the variability
about the parameter estimates and to conduct hypothesis tests. (See Schafer, 1997 and Brunner

& Schafer, 1997 for more details on multiple imputation and its application in LTA.)

Methods
Overview
The purpose of this simulation study is to investigate the bias of parameter estimates and
standard errors, and the coverage of confidence intervals based on LTA’s data augmentation
algorithm. Coverage refers to the frequency that a parameter’s confidence interval contains the
true parameter. Performance related to selected parameters will be examined to see if LTA’s

data augmentation algorithm successfully recovers parameters in the long run. Datasets were
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produced based on LTA models and known parameters, thus giving us the ability to compare
parameter estimates from generated random data against the true parameter values.

The Model

The model in this study was based on several recent empirical studies using LTA to
examine factors relating to adolescent substance use onset (see Hyatt & Collins, 1999). Results
from these empirical studies were modified slightly (an older cohort was used and the grouping
variable was eliminated) and used to define the model for this simulation study. This model
involves stage-sequential development over two times of measurement. There are five
dichotomous indicators of the latent status, and the model includes eight latent statuses. A
substantive example of this model might be substance use measured in 9th grade and again in
10th grade, with the following five manifest items: lifetime alcohol use, lifetime cigarette use,
two measures of drunkenness in the past year, and lifetime marijuana use. Figure 1 depicts the
mode] used in this study, which includes the following eight latent statuses defined from the
above five items:

1) No use

2) Alcohol use

3) Cigarette use

4) Alcohol use, cigarette use

5) Cigarette use, marijuana use

6) Alcohol use, cigarette use, drunkenness

7) Alcohol use, cigarette use, marijuana use

8) Alcohol use, cigarette use, drunkenness, marijuana use
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Table 1 displays the parameters used to generate the data. The 0 parameters represent the
probability of membership in each latent status at Time 1. The T parameters represent the
probability of transitioning to each latent status at Time 2 given latent status membership at Time
1. The p parameters represent the probability of answering ‘No’ to an item given latent status
membership. There are two sets of p parameters shown in Table 1. The "strong” condition
involved p parameters equal to .1 and .9, and the "weak" condition involved values of .3 and .7.

Data generation

The procedure for generating random data in this study is identical to the method used in
Hyatt and Collins (1998). See Flaherty and Collins (1998) for details on the program used to
generate response-format data. For each combination of the factors listed below, 1000 random
multivariate datasets were generated from a population with known parameters. For the
conditions involving missing data, the datasets from the corresponding cell with no missing data
were degraded. For the conditions involving 5 imputed datasets, the first 5 imputations from the
corresponding cell with 10 imputations were used. Each dataset was used in the initial EM
analysis, and retained for use with data augmentation if it converged to maximum likelihood
estimates within 5000 imputations, was identified, and did not have the "naming problem"; these
three criteria are explained in the analysis section below. Additional datasets were then
generated in each condition so that the total number of usable datasets per cell totaled 1000. The
average bias, average standard error, and coverage were calculated for each parameter estimate
by averaging across these final 1000 datasets.

Four factors were varied in this study. First, the sample size was varied such that N=300

and N=1000; we expected estimates based on larger samples to have less bias. Second, for each
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sample size, two sets of rho parameters were used to generate data. The first set employed
strong measurement parameters of .1 and .9, and the second set employed weak measurement
parameters of .3 and .7. Weak p parameters are an indication of higher levels of measurement
error, which is known to make the recovery of true parameter values more difficult. The third
factor varied in this study is the presence of missing data. The two conditions were no missing
data or missing data, where approximately 12% of the data were missing completely at random
due to a combination of spot missing and attrition. Attrition occurs when a subject has data at
Time 1 but not Time 2, and spot missing refers to data not being available for a particular item.
It was hypothesized that missing data will introduce some level of bias in parameter estimates.
The final factor varied in this study is the number of imputed datasets; the two conditions were 5
and 10 imputations. In theory, a larger number of imputed datasets should increase the accuracy
of the standard errors, however 5 imputations is expected to be quite sufficient; therefore the
gains from doubling the number of imputations (and therefore the time of computation) to 10 are
expected to be small. Table 2 displays the experimental design used in this simulation, showing
all combinations of the factors which were examined.

Analysis

Overview of the Analysis. In order to assess the performance of data augmentation for

estimating standard errors of LTA parameter estimates, 1000 datasets were randomly generated
from a known model in each combination of factors. Each dataset was then estimated via the
EM algorithm using two unique sets of starting values. Identification of each dataset was
assessed, and additional datasets were generated in order to obtain 1000 identified datasets for

each cell of the simulation. This allows for comparisons to be made across cells with equivalent
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statistical power. These datasets were then analyzed using data augmentation, and ten
imputations for each dataset were produced and analyzed. Figure 2 presents a flowchart of this

process.

Details about the EM Estimation. When estimating LTA models, various types of

parameter restrictions can be imposed on parameters in order to ensure identifiability of the
model and aid in interpretation. For the purposes of this study, the & parameters and all logical t
parameters were estimated freely. Table 3 shows which T parameters were estimated freely and
which were fixed to zero. To aid in model identification, a pattern of constraints was imposed on
the p parameters. First, we constrained the p parameters to be equal across time, which is
necessary for making the interpretation of the transition probabilities meaningful. Second,
additional constraints were added so that only two p parameters were estimated for each of the
five items. Table 4 displays the constraint pattern used for the estimation of the p parameters in
this study. This pattern is substantially more parsimonious than estimating all p parameters
freely. Each dataset was analyzed using two unique sets of starting values. Convergence of the
EM algorithm was reached when a mean absolute deviation between successive sets of parameter
estimates smaller than .00001 was reached within 5000 iterations. For each dataset, the G* and
the final parameter estimates based on the two sets of starting values were compared to determine
if the solution was identified. Datasets were considered identified when the G* values were equal
out to at least one decimal place and no parameter estimate differed by more than .03.

Tables 5 displays information about the original 1000 datasets generated under each
condition. For each combination of factors 1000 datasets were produced. The first column gives

unique designations for each cell in the design (this is primarily for our records), with extensions
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‘a’ and ‘b’ referring to the two different sets of starting values. The columns labeled ‘N’ and
‘Rho Strength’ refer to the sample size and strength of the rho parameters used to generate each
group of 1000 datasets (strong rho parameters were .9 and .1, and weak rho parameters were .7
and .3). The ‘Missing Data’ column refers to whether or not missing data was imposed on the
datasets. The ‘Start Values’ column displays which set of starting values was used, with close
starting values being nearer the true parameters.

The ‘# Converged’ column lists the number of datasets out of 1000 that converged within
5000 iterations. In this study all datasets in each cell converged within 5000 iterations. The
number of identified datasets appears in the ‘# Identified’ column. The ‘# With Naming
Problem’ column shows the number of identified datasets which had two or more latent statuses
that were not distinguishable due to similar patterns of the p parameters. In this study datasets
were discarded if the eight latent statuses were not distinguishable or if the order of the latent
statuses did not correspond to the order in the true model. The naming problem did not occur
under any conditions when p parameters were strong (values of .9 and .1). When the p
parameters were weak, however, as many as 9% of identified datasets had to be discarded. The
column labeled ‘# Good Sets’ shows the total number of identified datasets without the "naming
problem"” out of 1000. Additional datasets were then generated in order to have a total of 1000
that will be usable for DA. The final column in Table 5, ‘Total Sets Generated,” shows the
number of datasets that were required in order to produce 1000 usable datasets.

The number of the original 1000 datasets that were usable varied substantially across
cells. When strong p parameters were used to generate data, at least 98% of the datasets were

identified and did not have the naming problem. With weak p parameters, however, many more
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datasets were not identified or had naming problems. Less than 70% of the datasets involving a
small sample size, weak p parameters, and missing data were usable.

The parameter estimates based on the EM algorithm were used as starting values for data
augmentation. DA also requires that the user specify k, the number of iterations between each
imputation. A good rule of thumb is to set this equal to the number of iterations the EM
algorithm required to converge for a particular dataset. This rule was followed in this simulation,
so that the value of & for each dataset was determined by how quickly the EM converged for that
dataset. Table 6 shows the mean number of iterations, i.e. the mean value of k, for each cell,
along with the standard deviation, minimum, and maximum value of k& within each cell. Clearly
datasets with weak p parameters require data augmentation to run much longer between
imputations on average. Sample size appears to have little effect on the average number of
iterations to convergence. The presence of missing data results in a small increase in the number
of iterations to convergence on average. Parameter estimates and their variance estimates, along

with 95% confidence intervals, were retained from the data augmentation runs.

Results
Table 7 contains information on five selected parameter estimates under all conditions.
The bolded parameters in Table 1 correspond to the parameters that are reported in Table 7.
These parameters include two & parameters: Deltal, the probability of membership in the ‘No
use’ latent status (the true value is 0.4), and Delta8, the probability of membership in the
‘Alcohol use, cigarette use, drunkenness, and marijuana use’ latent status (the true value is 0.1).

Two T parameters are examined: Taull, the probability of ‘No use’ at Time 2 given ‘No use’ at
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Time 1 (the true value is 0.7), and Tau46, the probability of ‘Alcohol use, cigarette use, and
drunkenness’ at Time 2 given ‘Alcohol use and cigarette use’ at Time 1 (the true value is 0.1).
Table 7 also reports the results for Rho15, the p parameter representing the probability of
responding ‘No’ to the marijuana use item, given membership in the ‘No use’ latent status (the
true value is 0.9 for the strong measurement condition and 0.7 for the weak measurement
condition). Note that this parameter was constrained to be equal across time.

There is an obvious omission in Table 7. The cells that represent weak rhos, large sample
size, and missing data are not reported because the analysis was deemed impractical. Each
dataset runs for so many iterations, and each iteration requires so much processor time, that
computational aspects lead us to recommend that data augmentation not be used under these
conditions.

Table 7 allows us to examine which factors affect the unbiased recovery of true parameter
values. There are six entries in each cell of the table. The first entry, ‘N’, represents the number
of the 1000 usable datasets which produced rho parameters in the expected range for all ten
imputations. This criterion will be discussed in more detail below. All other entries in the cells
of Table 7 are based on their corresponding value of N reported here. The entry called ‘Est’

refers to the average parameter estimate based on data augmentation, or the average of theQ °s.

‘Bias’ is simply the difference between the average parameter estimate and the known true value
of the parameter. It is desirable to have a bias of 0, although when there is not much information
we expect that the prior information may introduce bias towards the values of the Jeffreys prior.
Hypothesis tests were conducted in each cell to test the null hypothesis that the bias equals 0.

Results were bolded to indicate one of two things: either the bias was less than .02, which was
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deemed to be insignificant by the investigators, or the confidence interval around the bias
contains 0, and thus bias was not statistically significant (with 95% certainty). Therefore, we
will consider bolded results to represent conditions under which parameters were recovered well,
and the bias was small enough to be considered acceptable. The entry called ‘Var(Est)’ refers to
the sample variance of the N average parameter estimates. ‘Avg. T’ corresponds to the average
total variance estimate across the N datasets. In the long run we expect the average total variance
to be approximately equal to the sample variance of the parameter estimate. Finally, ‘Coverage’
refers to the percentage of times the 95% confidence interval based on data augmentation
contains the parameter’s true value. As a point of comparison, Table 7 also reports the average
maximum-likelihood parameter estimate and the sample variance for all 1000 datasets.

The simulation was designed so that each set of conditions would have a sample of 1000
datasets so that comparisons across cells would be based on the same amount of information.
The multiple imputation approach to obtaining standard error estimates for each parameter relies
on taking multiple draws from the predictive posterior distribution of each parameter. An
interesting dilemma developed when we found that the distribution of individual rho parameters
covered 0.5. Table 1 shows how the eight latent statuses are defined. For example, Status 1
(representing the ‘No use’ latent status) is defined by a low probability of responding ‘Yes’ to
each substance use item. Because all delta and tau parameters in the LTA model are defined by
the rho parameters, it is unclear how to interpret these parameters when the rho parameters drawn
for each item have an unexpected pattern. Further complicating matters, because ten multiple
imputations were drawn in the analysis of each dataset, patterns of rho parameters could vary

across the imputations for a single dataset. In order to have interpretable parameters which
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correspond to this latent transition model, datasets were included in the analysis for the results in
Table 7 only if all 10 imputations produced estimates for the rho parameters which were
consistent with our model. This selection seriously restricts the data informing results under the
weak rho parameters condition; with a sample size of 300, only 76 out of 1000 datasets were
analyzed in the no missing data condition, and 38 out of 1000 datasets were used in the missing
data condition. The estimates of the parameters and their standard errors may be biased by this
selection effect, and therefore results based on conditions with weak rhos should be interpreted
with great caution. Conditions with strong rhos, however, can be examined thoroughly. Because
of this, the discussion of the results will focus on conditions containing strong rho parameters.

0 Parameters

For this model 6 parameters are the unconditional probability of being in a certain latent
status at Time 1. In this study, Deltal has a value of .4 (see Table 1), indicating that subjects
have a 40% chance of being in the ‘No Use’ status at Time 1. Under the strong p parameter
condition, this parameter was estimated without bias regardless of the sample size or the
presence of missing data. The coverage of the confidence intervals is excellent under all strong p
conditions, ranging from .95 to .96 in every case.

Delta8 has a known value of .1, representing a 10% chance of subjects being in the most
advanced latent status at Time 1. With strong p parameters, this parameter was estimated
without bias regardless of the sample size or the presence of missing data. Coverage of the
confidence intervals ranges from .91 to .95 for all strong measurement conditions, with the best

coverage in the cells relating to strong p parameters, large sample size, and no missing data.



Inference in LTA 15

t Parameters

In this study, T parameters represent the probability of being in a certain latent status at
Time 2 given membership in a certain latent status at Time 1. Taull, the probability of being in
the ‘No Use’ status at both Time 1 and Time 2, has a known value of .7 (see Table 1). This
parameter was estimated without significant bias under all conditions involving strong p
parameters. Interestingly, the bias was smallest in the cells corresponding to strong
measurement, small sample size, and missing data present. Coverage ranged from .94 to .98,
ensuring reasonable coverage under any set of conditions with strong measurement.

Tau46 represents the probability of being in the ‘Alcohol and Cigarettes’ status at Time 1
and the ‘Alcohol, Cigarettes, and Drunk’ status at Time 2. The true value of this parameter is .1,
and it was successfully recovered with strong p parameters and a large sample size. The
combination of strong measurement and a large sample size ensured a bias of less than .005. In
all strong measurement conditions coverage was .97 or higher. Under conditions involving
strong measurement and a small sample size, bias ranges from .02 to .04.
p Parameter

In this study, p parameters represent the probability of responding correctly or incorrectly
to a dichotomous item given membership in a latent status. Rhol5 corresponds to the probability
of answering ‘No’ to the Martjuana item given membership in the ‘No Use’ latent status. This
parameter was estimated without bias under all conditions characterized by strong measurement.
Coverage of the confidence intervals was .95 or higher with the large sample size, and .94 with

the small sample size.
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Effect of the Number of Imputed Datasets

The cost of imputing ten datasets rather than five lies mainly in processor time. This
study clearly shows that there is no substantial gain in doubling the number of imputed datasets.
Within any combination of p strength, sample size and missing data, the results are very similar
for 5 versus 10 imputations. In every case when comparing the two choices for the number of
imputations, when a parameter was estimated without bias for 5 imputations, the bias was also
nonsignificant for 10 imputations. There is no evidence that increasing the number of
imputations yields less bias or better coverage, and thus we recommend that five imputations is

sufficient for similar LTA models.

Discussion and Conclusions

The results of this study suggest that the use of data augmentation to estimate standard
errors of parameters for LTA models is appropriate and useful when the p parameters are strong.
Small sample sizes, missing data, and weak measurement parameters are conditions which reflect
a lack of information, whereas large sample sizes, no missing data, and strong measurement
parameters are conditions which indicate that there is more available information. Under poor
conditions there many not be enough information to apply data augmentation with confidence.

In general, parameter estimates based on data augmentation are more biased than the
maximum-likelihood estimates. However, conditions involving strong p parameters usually
yield results that are not substantially biased and that have reasonable coverage. A larger sample
size also appears to produce slightly less biased parameter estimates and better coverage. The

presence of missing data did not appear to reduce the performance of data augmentation
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substantially. Increasing the number of imputations from 5 to 10 did not substantially improve
the performance of data augmentation in LTA.

We know from past research (eg. Hyatt & Collins, 1998) that the strength of the p
parameters tends to be the most important factor in the estimation of LTA models. We believe
that this is also the most important factor in the performance of data augmentation in LTA.
However, in this study it is difficult to assess the effect of the p parameters because we
eliminated datasets when one or more of the ten imputed datasets produced a pattern of rho’s
inconsistent with the true model.

At this time we can confidently recommend the use of data augmentation for obtaining
estimates of standard errors in latent transition models involving strong measurement parameters.
In order to have the highest level of confidence when estimating standard errors in latent
transition models, one should have strong p parameters and a large sample size. Even with the
smaller sample size, bias was small and coverage was adequate in most cases when the p
parameters were strong. Until more research is conducted on the use of data augmentation with
weak p parameters, however, we recommend that the procedure not be used when the
measurement is not strong. Users can base this decision on the results provided by the EM
algorithm. One check that users can perform to ensure that results based on data augmentation
are clearly interpretable is to examine the pattern of the p parameters from each imputation and
verify that they are consistent.

Future research on the use of data augmentation to obtain multiple imputations in LTA
models may focus on model complexity, model correctness (specification of model), and

sparseness of cells in the LTA model. More importantly, however, research is needed in order to
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better understand how to interpret results when rho parameters do not hold consistent patterns
across the multiple imputations. One promising approach will be to apply an informative prior

other than the Jeffreys prior in the LTA model.
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Table 1

Parameter Values for Population

& Parameters at Time 1
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Status 1 Status 2 Status 3 Status 4 Status 5 Status 6 Status 7 Status 8
No Use A C AC CM ACD ACM ACDM
40 .10 15 .10 .05 .05 .05 10
1 Parameters (Transition Probabilities)
Time 2: Status 1 Status 2 Status 3 Status 4 Status 5 Status 6 Status 7 Status 8
Time 1:
Status 1 7 1 1 .02 .02 .02 .02 .02
Status 2 .0 i .0 .15 .0 .05 .05 .05
Status 3 .0 .0 .5 3 .05 .05 .05 .05
Status 4 .0 .0 .0 .6 .0 A 1 2
Status 5 .0 .0 .0 .0 5 .0 3 2
Status 6 .0 .0 .0 .5 .0 3 .0 2
Status 7 .0 .0 .0 .0 .0 .0 ¥ 3
Status 8 .0 .0 .0 .0 .0 .0 3 i
p Parameters (Measurement Parameters) for ‘No’ Response

Item 1 Item 2 Item 3 Item 4 Item 5

Alcohol Cigarettes Drinks Drunk Marijuana
Status 1 977 977 9/.7 9/.7 9/.7
Status 2 A/7.3 917.7 91/.7 9/.7 9/7.7
Status 3 9/.7 1/.3 91/7.7 9/.7 9/.7
Status 4 1173 173 9/.7 9/7.7 9/.7
Status 5 9/.7 173 9/ 9/.7 1/.3
Status 6 A/7.3 173 173 A7.3 9/7.7
Status 7 173 173 977 97.7 A/7.3
Status 8 d/7.3 7.3 A/.3 1/.3 173

' Values of .9 and .1 correspond to strong measurement condition.
Values of .7 and .3 correspond to weak measurement condition.
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Table 2

Experimental Design: Number of Datasets Generated per Condition

Weak p parameters (.3, .7) Strong p parameters (.1, .9)
300 Subjects 1000 Subjects 300 Subjects 1000 Subjects
No No No No
Missing | Missing | Missing | Missing | Missing | Missing | Missing | Missing
Data Data Data Data Data Data Data Data
5 Imputed
Datasets 1000 1000 1000 1000 1000 1000 1000 1000
10 Imputed
Datasets 1000 1000 1000 1000 1000 1000 1000 1000




Inference in LTA 22

Table 3

T Parameter Restrictions

Status | Status 2 Status 3 Status 4 Status 5 Status 6 Status 7 Status 8

Status 1 FR! FR FR FR FR FR FR FR
Status 2 0 FR 0 FR 0 FR FR FR
Status 3 0 0 FR FR FR FR FR FR
Status 4 0 0 0 FR 0 FR FR FR
Status 5 0 0 0 0 FR 0 FR FR
Status 6 0 0 0 FR 0 FR 0 FR
Status 7 0 0 0 0 0 0 FR FR
Status 8 0 0 0 0 0 0 FR FR

' FR represents parameters freely estimated.
0 represents parameters fixed to zero.
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Table 4

o Parameter Restrictions

Alcohol* Cigarettes 5+ Drinks Drunk Marijuana
Latent Status 1 a c e g i
Latent Status 2 b c e g i
Latent Status 3 a d e g 1
Latent Status 4 b d e g 1
Latent Status 5 a d e g j
Latent Status 6 b d f h i
Latent Status 7 b d e g ]
Latent Status 8 b d f h j

! Parameters denoted by the same letter are constrained equal.



Table 5

Simulation Results for EM Estimation
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Dataset # # # With # Total
Desig- Rho Missing Start Con- Iden- Naming Good Sets
nation N Strength Data Values | verged | tified Problem Sets Generated
dasimla 300 weak No close 1000 823 54 769 1283
dasiml1b far 1000

dasim2a 300 weak Yes close 1000 764 72 692 1449
dasim2b far 1000

dasim3a 300 strong No close 1000 993 0 993 1007
dasim3b far 1000

dasim4a 300 strong Yes close 1000 993 0 993 1007
dasim4b far 1000

dasim5a 1000 weak No close 1060 885 1 884 1132
dasimSb far 1000

dasim6a 1000 weak Yes close 1000 832 1 831 N/A
dasim6b far 1000

dasim7a 1000 strong No close 1000 980 0 980 1020
dasim7b far 1000

dasim8a 1000 strong Yes close 1060 982 0 982 1018
dasim8b far 1000

Identification Criteria:

G’ equal to one decimal place and no estimate difference greater than .03.
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Table 6

Summary of Iterations used for DA Estimation

Rho Missing Mean SD Min Max
N Strength Data Iterations Iterations Iterations Iterations

dasim1 300 weak 0% 623 356 138 4051
dasim?2 300 weak 12% 670 382 208 3620
dasim3 300 strong 0% 67 24 29 476
dasim4 300 strong 12% 84 27 38 273
dasim5 1000 weak 0% 647 217 286 2407
dasim6 1000 weak 12% 740 263 260 2856
dasim7 1000 strong 0% 54 11 30 117
dasim8 1000 strong 12% 70 14 41 136




Table 7

Simulation Results for Selected Parameters

DELTA1: No Use (& = .4)

Weak rho parameters (.3 and .7):
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300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data
DA N=76 N=38 N =676
estimate: Est = 4311 Est = 4145 Est = .4576
5 Imputed Bias =.0311 Bias = .0145 Bias = .0576
Datasets Var(Est) = .0095 Var(Est) =.0111 Var(Est) = .0076
Avg. T =.0206 Avg. T =.0218 Avg. T=.0115
Coverage = .961 Coverage = .974 Coverage = .942
DA N=76 N=38 N =676
estimate: Est = .4373 Est = .4236 Est =.4548
10 Imputed | Bias =.0373 Bias =.0236 Bias = .0548
Datasets Var(Est) = .0061 Var(Est) =.0084 Var(Est) = .0067
Avg. T=.0191 Avg. T =.0214 Avg. T=.0101
Coverage = .961 Coverage = 1.00 Coverage = .942
ML Estimate = .3669 Estimate = .3526 Estimate = .3859
Estimate Var = .0283 Var=.0316 Var = .0094
Strong rho parameters (.1 and .9):
300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data
DA N =1000 N =990 N =1000 N =1000
estimate: Est = .4029 Est = .4112 Est = .4000 Est =.3998
5 Imputed Bias = .0029 Bias = .0112 Bias = .0000 Bias = -.0002
Datasets Var(Est) = .0018 Var(Est) = .0022 Var(Est) = .0005 Var(Est) = .0059
Avg. T =.0020 Avg. T =.0023 Ave. T =.0005 Avg. T =.0006
Coverage =.959 Coverage = .954 Coverage = .952 Coverage = .952
DA N =1000 N =990 N =1000 N =1000
estimate: Est = .4041 Est = .4103 Est =.3984 Est =.3999
10 Imputed | Bias =.0041 Bias = .0103 Bias = -.0016 Bias = -.0001
Datasets Var(Est) =.0017 Var(Est) = .0021 Var(Est) = .0004 Var(Est) = .0005
Avg. T =.0019 Avg. T =.0022 Avg. T =.0005 Avg. T =.0006
Coverage = .953 Coverage = .956 Coverage = .958 Coverage = .958
ML Estimate = .3998 Estimate = .3993 Estimate = .4001 Estimate = .3998
Estimate Var =.0017 Var = .0020 Var = .0004 .0005

Note: Bolded results indicate that bias is not significantly different from 0 with 95% confidence or bias is < .02.




Table 7 (continued)

Simulation Results for Selected Parameters

DELTAS: Alcohol+Cigarettes+Drunk+Marijuana (5 = .1)

Weak rho parameters (.3 and .7):
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300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N=76 N=38 N=676
estimate: Est=.1411 Est = .1407 Est =.1331
5 Imputed Bias =.0411 Bias = .0407 Bias = .0331
Datasets Var(Est) = .0025 Var(Est) = .0025 Var(Est) = .0017

Avg. T =.0054 Avg. T =.0051 Avg. T =.0024

Coverage = .934 Coverage = .895 Coverage = .922
DA N=76 N=38 N =676
estimate: Est=.1370 Est =.1420 Est=.1344
10 Imputed | Bias =.0370 Bias =.0420 Bias = .0344
Datasets Var(Est) = .0021 Var(Est) = .0022 Var(Est) = .0016

Avg. T =.0046 Avg. T =.0047 Avg. T =.0023

Coverage = .974 Coverage = .947 Coverage = .920
ML Estimate = .0705 Estimate = .0726 Estimate = .0864
Estimate Var =.0038 Var =.0042 Var =.0019

Strong rho parameters (.1 and .9):
300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N =1000 N =990 N = 1000 N =1000
estimate: Est =.1141 Est =.1184 Est =.1047 Est = .1065
5 Imputed Bias =.0141 Bias = .0184 Bias =.0047 Bias = .0065
Datasets Var(Est) = .0005 Var(Est) = .0005 Var(Est) = .0002 Var(Est) =.0002

Avg. T =.0006 Avg. T =.0007 Avg. T =.0002 Ave. T =.0002

Coverage = .917 Coverage = .910 Coverage = .947 Coverage =.924
DA N =1000 N =990 N = 1000 N =1000
estimate: Est=.1139 Est=.1182 Est =.1052 Est =.1067
10 Imputed | Bias =.0139 Bias =.0182 Bias = .0052 Bias = .0067
Datasets Var(Est) = .0004 Var(Est) = .0005 Var(Est) = .0002 Var(Est) = .0002

Avg. T =.0006 Avg. T =.0007 Avg. T =.0002 Avg. T =.0002

Coverage = .928 Coverage = 911 Coverage = .939 Coverage = .932
ML Estimate = .0988 Estimate = .0981 Estimate = .1001 Estimate = .0998
Estimate Var = .0005 Var = .0005 Var = .0004 Var =.0002

Note: Bolded results indicate that bias is not significantly different from O with 95% confidence or bias is < .02.




Table 7 (continued)

Simulation Resuits for Selected Parameters

TAU11: No Use at Time 1, No Use at Time 2 (t =.7)

Weak rho parameters (.3 and .7):
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300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N=76 N =38 N =676
estimate: Est = .4707 Est = .4654 Est =.6445
5 Imputed Bias =-.2293 Bias =-.2346 Bias =-.0555
Datasets Var(Est) = .0185 Var(Est) = .0217 Var(Est) = .0093

Avg. T =.0496 Avg. T =.0496 Avg. T =.0151

Coverage = 947 Coverage = .974 Coverage = .985
DA N=76 N =38 N=676
estimate: Est =.4653 Est = .4695 Est = .6456
10 Imputed | Bias =-.2347 Bias =-.2305 Bias =-.0544
Datasets Var(Est) = .0167 Var(Est) =.0199 Var(Est) = .0081

Avg. T =.0434 Avg. T =.0443 Avg. T=.0142

Coverage = .961 Coverage = 1.00 Coverage = 984
ML Estimate = .6331 Estimate = .6185 Estimate = .6804
Estimate Var = .0490 Var = .0601 Var =.0164

Strong rho parameters (.1 and .9):
300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N=1000 N =990 N = 1000 N = 1000
estimate: Est =.7093 Est =.7050 Est =.7176 Est =.7182
5 Imputed Bias =.0093 Bias = .0050 Bias =.0176 Bias = .0182
Datasets Var(Est) = .0046 Var(Est) = .0056 Var(Est) =.0023 Var(Est) =.0027

Avg. T =.0068 Avg. T =.0076 Avg. T =.0023 Avg. T =.0028

Coverage = .965 Coverage = .977 Coverage = .945 Coverage = .939
DA N = 1000 N =990 N =1000 N =1000
estimate: Est =.7121 Est =.7041 Est =.7165 Est=.7174
10 Imputed | Bias =.0121 Bias = .0041 Bias = .0165 Bias = .0174
Datasets Var(Est) =.0043 Var(Est) = .0052 Var(Est) = .0022 Var(Est) =.0025

Avg. T =.0065 Avg. T =.0070 Avg. T =.0021 Avg, T =.0026

Coverage = .983 Coverage = .980 Coverage = .950 Coverage = .950
ML Estimate = .6942 Estimate = .6932 Estimate = .7026 Estimate = .7016
Estimate Var =.0055 Var = .0067 Var = .0018 Var =.0021

Note: Bolded results indicate that bias is not significantly different from 0 with 95% confidence or bias is < .02.




Table 7 (continued)

Simulation Results for Selected Parameters
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TAU46: Alcohol+Cigarettes at Time 1, Alcohol+Cigarettes+Drunk at Time 2 (1 =.1)

Weak rho parameters (.3 and .7):

300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N=76 N =38 N=676
estimate: Est =.2234 Est=.2030 Est =.1959
5 Imputed Bias =.1234 Bias = .1030 Bias = .0959
Datasets Var(Est) = .0091 Var(Est) = .0108 Var(Est) =.0113

Avg. T =.0690 Avg. T =.0641 Avg. T=.0558

Coverage = 1.00 Coverage = 1.00 Coverage = .993
DA N=76 N=38 N =676
estimate: Est=.2236 Est=.2188 Est=.1952
10 Imputed } Bias =.1236 Bias =.1188 Bias =.0952
Datasets Var(Est) = .0056 Var(Est) = .0069 Var(Est) = .0071

Avg. T =.0640 Avg. T =.0668 Avg. T =.0506

Coverage = 1.00 Coverage = 1.00 Coverage = 1.00
ML Estimate = .1736 Estimate = .1854 Estimate = .1476
Estimate Var =.0810 Var =.0891 Var =.0501

Strong rho parameters (.1 and .9):
300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N = 1000 N =990 N =1000 N =1000
estimate: Est =.1240 Est = .1371 Est =.0958 Est =.0968
5 Imputed Bias = .0240 Bias = .0371 Bias = -.0042 Bias = -.0033
Datasets Var(Est) = .0069 Var(Est) = .0088 Var(Est) = .0030 Var(Est) = .0039

Avg. T=.0178 Avg. T =.0235 Avg. T =.0042 Avg. T =.0054

Coverage = .988 Coverage = .991 Coverage = .972 Coverage = .966
DA N = 1000 N =990 N = 1000 N = 1000
estimate: Est=.1264 Est=.1369 Est = .0964 Est =.0969
10 Imputed | Bias =.0264 Bias = .0369 Bias = -.0036 Bias = -.0031
Datasets Var(Est) = .0062 Var(Est) = .0074 Var(Est) = .0029 Var(Est) = .0034

Avg. T=.0170 Avg. T =.0222 Avg. T =.0038 Avg. T =.0051

Coverage = .992 Coverage = .996 Coverage = .977 Coverage = .981
ML Estimate = .1081 Estimate = .1067 Estimate = .0975 Estimate = .0987
Estimate Var = .0094 Var=.0118 Var =.0003 Var =.0039

Note: Bolded results indicate that bias is not significantly different from O with 95% confidence or bias is < .02.




Table 7 (continued)

Simulation Results for Selected Parameters

RHOI1S: ‘No’ to Marijuana Item, Given ‘No Use’ (0 =.1 or .3)

Weak rho parameters (.3 and .7):
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300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N=76 N=38 N =676
estimate: Est=.7214 Est =.7200 Est =.7106
5 Imputed Bias = .0214 Bias = .0200 Bias = .0106
Datasets Var(Est) = .0013 Var(Est) =.0017 Var(Est) = .0005

Avg. T =.0022 Avg. T =.0018 Avg. T =.0007

Coverage = .974 Coverage = .974 Coverage = .957
DA N=76 N =38 N =676
estimate: Est =.7206 Est=.7172 Est =.7107
10 Imputed | Bias =.0206 Bias =.0172 Bias = .0107
Datasets Var(Est) = .0011 Var(Est) =.0016 Var(Est) = .0005

Avg. T=.0019 Avg. T =.0668 Avg. T =.0007

Coverage = .987 Coverage = .974 Coverage = .969
ML Estimate = .7108 Estimate = .7178 Estimate = .7033
Estimate Var =.0024 Var =.0032 Var =.0007

Strong rho parameters (.1 and .9):
300 Subjects 1000 Subjects
No Missing Data Missing Data No Missing Data Missing Data

DA N = 1000 N =990 N = 1000 N =1000
estimate: Est = .8927 Est = .8905 Est = .8982 Est = .8983
5 Imputed Bias = -.0073 Bias = -.0095 Bias = -.0018 Bias = -.0017
Datasets Var(Est) =.0004 Var(Est) = .0004 Var(Est) = .0001 Var(Est) = .0001

Avg. T =.0004 Avg. T =.0005 Avg. T =.0042 Avg. T =.0002

Coverage = .937 Coverage =.939 Coverage = .954 Coverage = .958
DA N =1000 N =990 N = 1000 N = 1000
estimate: Est = .8924 Est = .8905 Est = .8985 Est = .8984
10 Imputed | Bias =-.0076 Bias = -.0095 Bias = -.0015 Bias = -.0016
Datasets Var(Est) = .0003 Var(Est) = .0004 Var(Est) = .0001 Var(Est) =.0001

Avg. T =.0004 Avg. T =.0048 Avg,. T =.0001 Avg. T =.0002

Coverage = .940 Coverage = .939 Coverage = .960 Coverage = .965
ML Estimate = .9018 Estimate = .9027 Estimate = .9009 Estimate = .5012
Estimate Var = .0004 Var =.0005 Var =.0001 Var =.0001

Note: Bolded results indicate that bias is not significantly different from 0 with 95% confidence or bias is < .02.
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Figurel. The Hypothetical Model of Substance Use Onset
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Model:
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Figure 2. Flowchart of Simulation to Test LTA’s Missing Data Routine




