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Abstract

A model-based approach is proposed to empirically derive and summarize the class-dependent

density functions of distal outcomes with categorical, continuous, or count distributions. A Monte

Carlo simulation study is conducted to compare the performance of the new technique to two

commonly used classify-analyze techniques: maximum-probability assignment and multiple

pseudo-class draws. Simulation results show that the model-based approach produces

substantially less biased estimates of the effect compared to either classify-analyze technique,

particularly when the association between the latent class variable and the distal outcome is

strong. In addition, we show that only the model-based approach is consistent. Sample SAS

syntax for implementing this approach using PROC LCA and a corresponding macro are

provided.
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A Technical Introduction: A Model-Based Approach to Latent Class

Analysis With Distal Outcomes

When an observed predictor is used to predict latent class membership, the mathematical

model is well understood. LCA with covariates has been described in detail in the literature (see

Collins & Lanza, 2010; Lanza, Collins, Lemmon, & Schafer, 2007) and is summarized below.

However, in the current study we are interested in an effect in the opposite direction, in which the

predictor is latent and the outcome is manifest (i.e., predicting a distal outcome from latent class

membership). To be more precise, we are interested in the conditional distribution of a distal

outcome, Z, given a latent class variable, C. In this case, the problem is more difficult because

the predictor (true subgroup membership) is unknown (see Figure 1; Lanza, Collins, Schafer, &

Flaherty, 2005).

The two most common approaches to LCA with a distal outcome are the

maximum-probability assignment rule (Nagin, 2005) and the multiple pseudo-class draws

approach (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Wang, Brown, &

Bandeen-Roche, 2005). Because these two classify-analyze approaches involve assigning (i.e.,

imputing) latent class membership and conducting the outcome analysis in separate steps,

conclusions drawn about the effect of C on Z may be incorrect for several reasons. First, there is

uncertainty related to class membership, which is not taken into account in the

maximum-probability assignment rule. Second, and more importantly, all standard

classify-analyze approaches impute the latent variable under a model that is not sufficiently

general; this may result in attenuated estimates of the relation between C and Z.

We propose a new model-based approach to LCA with distal outcomes that is flexible in

terms of the metric of Z and straightforward to implement. After a brief introduction to the

latent class model, we introduce a model-based approach to LCA with a distal outcome and

perform a simulation study to demonstrate its performance relative to classify-analyze approaches.
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A Brief Review of the Latent Class Model

The latent class model, which is described in detail by Collins and Lanza (2010) and Lanza

et al. (2007), can be summarized as follows. Suppose that there are K latent subgroups that

must be inferred from j = 1, ..., J observed variables, and that variable j has rj = 1, ..., Rj

response categories. Let x = (r1, ..., rJ) represent the vector of a particular subject’s responses to

the J variables. Let C represent the latent variable with latent classes c = 1, ...,K. Finally,

I(xj = rj) is an indicator function that equals 1 when the response to variable j = rj , and equals

0 otherwise. The probability of observing a particular response pattern is

Pr{X = x} =
K∑
c=1


c

J∏
j=1

Rj∏
rj=1

�
I(xj=rj)

j,rj ∣c , (1)

where 
c represents the probability of membership in latent class c and �
I(xj=rj)

j,rj ∣c represents the

probability of response rj to item j given membership in latent class c.

This model can be extended to include covariates (i.e., predictors of latent class

membership) using a logistic regression model in which the outcome is a categorical latent

variable (see (Bandeen-Roche, Miglioretti, Zeger, & Rathouz, 1997; Collins & Lanza, 2010;

Dayton & Macready, 1988)). Suppose that a covariate U is used to predict latent class

membership. Then the latent class model can be expressed as

Pr{X = x∣U = u} =

K∑
c=1


c(u)

J∏
j=1

Rj∏
rj=1

�
I(xj=rj)

j,rj ∣c , (2)

where 
c(u) = Pr{C = c∣U = u} is a standard baseline-category multinomial logistic model (e.g.,

Agresti, 2002).

With a single covariate U , 
c(u) can be expressed as


c(u) = Pr{C = c∣U = u} =
e�0c+�1cu

1 +
∑K−1

c′=1 e
�0c′+�1c′u

(3)

for c′ = 1, ...,K − 1 and reference class K.
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Individuals’ posterior probabilities of membership in each latent class can be obtained from

the resultant LCA parameters by applying Bayes’ theorem (e.g., Gelman, Carlin, Stern, & Rubin,

2003; Lanza et al., 2007):

Pr{C = c∣U = u} =
Pr{C = c}Pr{U = u∣C = c}

Pr{U = u}
. (4)

A model with a particular number of latent classes can be selected using a bootstrap

likelihood-ratio test (McLachlan & Peel, 2000; McLachlan, 1987), as well as information criteria

such as AIC (Akaike, 1974), BIC (Schwartz, 1978), CAIC (Bozdogan, 1987), and a-BIC (Sclove,

1987). Multiple sets of random starting values should be used to assess the degree of certainty

that the global maximum (as opposed to a local maximum) in the likelihood function has been

identified. In addition, the ability to interpret the latent classes in a solution can help guide

model selection.

Effect sizes in LCA. It is possible to calculate an effect size (Cohen, 1992) indicating the

strength of association between a latent class variable C and a distal outcome Z. The effect size is

calculated as follows:

∙ For a categorical outcome Z with m categories,

! =

√√√⎷ m∑
i=1

K∑
j=1

(Pij − P0ij)2

P0ij
,

where Pij = Pr{Z = i, C = j} = �j Pr{Z = i∣C = j}, P0ij = Pr{Z = i}. We note that ! = 0 if

and only if Pij = Pr{Z = i, C = j} = Pr{Z = i}. That is, ! = 0 if and only if C and Z are

independent.

∙ For a continuous or count outcome,

! =

√√√⎷ K∑
c=1

�c(�c − �)2,

where �c = Pr{C = c}, �c = E(Z∣C = c), and � = E(Z) =
∑K

c=1 �cE(Z∣C = c) =
∑K

c=1 �c�c.
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The estimated effect size will vary depending on whether a model-based approach,

maximum-probability assignment, or a multiple pseudo-class draws approach is used to estimate

the effect. In addition, for a continuous distal outcome, while it is typical to use the conditional

mean when calculating the effect size, when the distribution of Z∣C is skewed we may instead use

the mode when calculating the effect size.

A Model-Based Approach to Predict a Distal Outcome from Latent

Class Membership

Let us first restate the problem more precisely. We have multiple observed indicators X, a

distal outcome Z, and a latent class variable C. We assume that (X,C) follows an LCA model

with a fixed number of classes. Although C is not observable, we wish to estimate the conditional

distribution of the distal outcome for each latent class (Z∣C). However, without certain

assumptions regarding the joint distribution of (X,Z,C), the estimation of Z∣C is not possible.

In general, the joint distribution of random variables is not identifiable from their marginal

distributions alone (Casella & Berger, 1990).

An Important Assumption: Conditional Independence Between X and Z Given C

In order to be able to estimate the conditional distribution of Z given C, f(Z∣C), we

propose making the assumption of conditional independence between X and Z given the latent

class variable C. That is, we assume that f(X,Z∣C) = f(X∣C)f(Z∣C). Although there might be

alternative assumptions which can also resolve the non-identifiability issue, we prefer this

conditional independence assumption for its similarity to the local independence assumption

underlying most LCA models (Collins & Lanza, 2010).

For completeness, the assumptions underlying the proposed model-based approach to LCA

with distal outcomes can be explicitly listed as follows. First, we assume that in addition to the

observed response indicator variables X and distal outcome Z, there exists a latent class variable

C, and the marginal distribution of the latent class variable C is Pr{C = c} = �c (c = 1, 2, ...,K),

with 0 < �c < 1 (c = 1, 2, ...,K) and
∑K

c=1 �c = 1. Second, we assume that the conditional
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distribution of X given C is implied by the fundamental LCA model, defined above. Third, we

assume that the conditional distribution of C given Z can be summarized by a logistic regression

model:

Pr{C = c ∣ Z = z} =
e�0c+�1cz

1 +
∑K−1

c′=1 e
�0c′+�1c′z

.

Assuming a logistic regression model for predicting C from a covariate is quite reasonable, and is

standard practice in the LCA literature (e.g., Vermunt & Magidson, 2005) .

Modeling the Latent Class Variable and the Effect of C on Z Simultaneously

In LCA with a distal outcome, interest lies in the density f{Z = z∣C = c}. We can

determine the desired distribution of Z∣C by applying Bayes’ Theorem:

f{Z = z∣C = c} =
f{Z = z} × f{C = c∣Z = z}

f{C = c}
.

Given the assumptions above, f{C = c} is determined by the LCA model and f{C = c∣Z = z} is

determined by the LCA model with Z included as a covariate. The final piece of necessary

information, f{Z = z}, is the marginal distribution of Z, which can be estimated using the

empirical distribution of Z. In the following, we first present how to estimate f{Z = z∣C = c}

when Z is a binary distal outcome, and then discuss extending this approach to categorical

outcomes with more than two categories and to count outcomes; we then present an approach for

estimating the conditional distribution of a continuous Z. No assumption about the particular

distributional form of Z, such as Gaussian, is required.

Prediction of a binary/categorical/count distal outcome. When Z is binary, including Z as

an additional indicator in the LCA model, including Z as a grouping variable in the LCA model,

and incorporating Z into the LCA model as a covariate are mathematically equivalent. All of

these approaches require the assumption of conditional independence between X and Z given C

Roeder et al. (1999). We recommend the third approach of incorporating Z as a covariate because

it can be readily extended to other types of distal outcomes without requiring distributional
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assumptions of Z. Then, the density of concern, f{Z = z∣C = c}, can be expressed as

Pr{Z = z∣C = c} =
Pr{Z = z}e�0c+�1cz

Pr{C = c}(1 +
∑K−1

c′=1 e
�0c′+�1c′z)

.

Using this approach, Pr{Z = z} is estimated from the empirical distribution of Z (i.e., from the

proportions in the observed data); the estimates for {�0c, �1c; c = 1, 2, ...,K − 1} are provided by

the LCA with covariates model; and the marginal distribution Pr{C = c} can be obtained by

multiplying Pr{C = c ∣ Z = z} by the marginal distribution Pr{Z = z}. If one uses PROC LCA

(Lanza, Dziak, Huang, Xu, & Collins, 2011), Pr{C = c} is part of the default output even when

the model includes a covariate. Thus, we can estimate Pr{Z = z∣C = c} given these estimates for

Pr{Z = z}, Pr{C = c}, and {�0c, �1c; c = 1, 2, ...,K − 1}.

An Excel calculator has recently been published online (Lanza & Rhoades, 2011b) so that

analysts can implement this approach to LCA with a binary distal outcome in their work. The

calculator uses as inputs the logistic regression coefficients (�1c) and the known marginal

probabilities of the binary distal outcome; the calculator then provides the probabilities of Z given

C. This approach is demonstrated in the corresponding article by Lanza and Rhoades (2011a).

The arguments used for a binary distal outcome, described above, can be extended to a

categorical outcome with more than two categories (i.e., Z ∈ {1, 2, 3...,m} and m ≥ 2), if we

assume that

Pr{C = c ∣ Z = i} =
e�0c+�1ci

1 +
∑K−1

c′=1 e
�0c′+�1c′i

, for i = 2, 3, ...,m.

This is equivalent to using Z as a grouping variable; in this case Pr{C = c ∣ Z = i} is a

group-specific mixing proportion.

The model for LCA with a binary distal outcome can also be extended to a count type

outcome with more than two categories (i.e., Z ∈ {0, 1, 2, 3, ...}), if we assume that

Pr{Z = z∣C = c} =
Pr{Z = z}e�0c+�1cz

Pr{C = c}(1 +
∑K−1

c′=1 e
�0c′+�1c′z)

, z = 0, 1, 2, ... .

In this approach, Pr{Z = z} is also estimated from the empirical distribution of Z, instead of
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assuming a certain conditional distribution for Z∣C, such as a conditional Poisson distribution

Z∣(C = c) ∼ Poisson(�c).

Prediction of a continuous distal outcome. Obtaining the distribution of a continuous distal

outcome given C is a more complicated case than that of a categorical Z. We propose extending

the approach described above for a binary/categorical/count distal outcome to continuous

outcomes. Similar to the binary/categorical/count case, using this approach we are able to obtain

estimates for {�0c, �1c; c = 1, 2, ...,K − 1} from the LCA with covariates model. Then, to estimate

f{Z = z∣C = c} we need to estimate f{Z = z}, and the marginal distribution Pr{C = c} can be

obtained by multiplying Pr{C = c ∣ Z = z} by the marginal distribution f{Z = z}. As mentioned

above, this is part of the standard output of PROC LCA. We estimate the density of Z using

kernel density estimates (Silverman, 1986) for continuous variables, which can be readily

implemented using SAS PROC KDE (SAS Institute Inc., 2002-2004). The default bandwidth

selection method in PROC KDE is based on the plug-in formula of Sheather and Jones, as

suggested in Jones, Marron, and Sheather (1996). In sum, we propose a flexible, semi-parametric

approach for modeling the effect of C on a continuous Z, in which we empirically estimate the

distribution of Z. Using the conditional and marginal distributions we can obtain the mean (or

mode) of Z for each latent class. Again, this approach does not require a specification of the

conditional distribution of Z given C, such as a conditional normal distribution

Z∣(C = c) ∼ N(�c, �
2); instead, it uses the empirical distribution of Z.

Software. LCA, as well as the proposed model-based approach to LCA with a distal

outcome, can be conducted in SAS. Syntax for conducting LCA with a distal outcome is included

in the Appendix. The SAS procedure for conducting latent class analysis, PROC LCA (Lanza,

Dziak, Huang, Xu, & Collins, 2011), and the new %LCA distal macro (Tan, Lanza, & Wagner,

2011), are available for download at methodology.psu.edu.

In order to examine the properties of this model-based approach to LCA with a distal

outcome, we now move to a simulation study. The impact of four factors on performance of this

technique is examined for binary, count, and continuous outcomes. Performance of the proposed
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model-based approach is compared to that of maximum-probability assignment and multiple

pseudo-class draws.

A Comparison of Three Estimation Methods for LCA with a Distal

Outcome

Design

In this simulation study, we examined the effect of four factors on the performance of the

model-based approach, as well as the two classify-analyze approaches, to LCA with a distal

outcome. The factors were the conditional distribution of the distal outcome, Z; the strength of

the association between the latent class variable and the distal outcome (i.e., effect size); the

quality of the LCA measurement model (i.e., the degree of association between the observed and

latent variables, which in this case corresponds to the degree of separation between latent classes);

and the sample size. Specifically, the levels of the factors considered were as follows.

Type of Z. Three types of the distal outcome were considered: binary, continuous, and

count. (Categorical distal outcomes were not considered in the current simulation study.) In our

simulation, we let Z∣C = c ∼ Binom(pc) for binary Z; Z∣C = c ∼ N(�c, 1) for continuous Z; and

Z∣C = c ∼ Poisson(�c) for count Z. We hypothesized that any attenuation observed when a

model-based approach is not used would be present regardless of the distribution of Z.

Strength of the effect of C on Z. For each Z distribution listed above, four strengths of

association between the latent class variable and the distal outcome were considered. These

corresponded to no effect, weak effect, medium effect, and strong effect as defined by Cohen

(1992). The corresponding population values of pc (for binary Z), �c (for continuous Z), and �c

(for count Z), are listed in the top, middle and lower panel of Table 1, respectively. We

hypothesized that attenuation of the effect of C on Z would increase as the effect size increases,

and that this attenuation would be much smaller for the model-based approach as compared to

the two classify-analyze approaches.
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LCA measurement model. Using the empirical example of latent classes of adolescent

depression described in Lanza, Flaherty, & Collins (2003) as a basis, latent class models with

eight binary indicators and five latent classes were considered. We specified latent class

prevalences and measurement models that had a structure similar to that in the empirical study.

For all models in this simulation study, the proportion of individuals in Classes 1 through 5 were

specified to be 40%, 20%, 20%, 10%, and 10%, respectively. Two levels of measurement quality

were considered: moderate, characterized by item-response probabilities equal to .8 or .2, and

high, characterized by item-response probabilities equal to .9 or .1. Table 2 shows the set of

item-response probabilities specified to achieve these two levels of measurement. We hypothesized

that high measurement quality would reduce bias under any other combination of factors,

regardless of estimation method.

Sample size. We considered sample sizes of 500 and 1000. Assessing performance for very

small sample sizes was not a goal of this study; rather, we were interested in examining whether

any benefits are achieved by increasing n from a moderate size to a large size. We hypothesized

that there would be little difference in the results when comparing sample sizes of 500 and 1000.

The fully crossed factorial design consisted of 48 conditions. For each condition, we

implemented three approaches for estimating the effect of C on Z: the proposed model-based

approach, the maximum-probability assignment approach, and the multiple (in this case, 20)

pseudo-class draws approach. For each condition, we replicated the analysis 1000 times and

summarized the simulation outputs to assess how each factor affected performance of the three

approaches.

Procedure

The following Monte Carlo procedure was used in each of the 48 simulation design cells.

Step 1: Generation of LCA data. Given the specified LCA model (i.e., latent class

prevalences and item-response probabilities) and the specified strength of association between C

and Z, to generate one random observation, we first generated a latent class variable C from a
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multinomial distribution specified by the latent class prevalences (i.e., mixing proportions); we

then generated item responses based on the item-response probabilities (i.e., � parameters) for

that cell, and then generated the distal outcome Z based on the C-Z model for that cell.

Step 2: LCA model fitting. For each replicate data set, two different LCA models were fit.

The first model included no distal outcome Z (for the maximum-probability assignment and

pseudo-class draws approaches), and the second model included the distal outcome Z as a

covariate (for the model-based approach). We used 100 sets of random starting values for the

LCA model that did not include Z in order to avoid local maxima and for an examination of

model identification. The parameter estimates from the model that did not include Z were used

as starting values for the LCA model with Z as a covariate.

Step 3: Calculation of Z given C for each approach. Given the LCA results derived in Step

2, along with the random sample, the estimation of the effect of C on Z was conducted for each

approach. For the model-based approach we employed the procedure described above, which

relies on the �, 
 and � parameters from the LCA model with Z included as a covariate. For

maximum-probability assignment and multiple pseudo-class draws, we first inferred the latent

classes C for each observation using the corresponding approaches (described above), and then in

a subsequent model we estimated the effect of C on Z. For the pseudo-class draws approach, this

final step was repeated 20 times and results were combined across draws.

Step 4: Summary of results. The goal of this step was to summarize results across the 1000

replicate data sets in order to draw comparisons between the three methods of estimation. For

each approach, we first compared the estimated effect of C on Z to the true effect, shown in Table

1, and then summarized the results across replications to obtain the bias and root mean squared

error (RMSE) for each parameter estimate. This step required that we address the issue that the

ordering of the latent classes is random across the 1000 replicates. To impose a standard order on

the latent classes, we wrote a SAS macro to take the LCA estimates and true LCA model

parameters as inputs, then reordered the latent classes based on distance calculations comparing
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the estimated LCA parameters and the true LCA model parameters.

Results

Tables 3, 4, and 5 show simulation results for the binary, continuous, and count outcomes,

respectively. Within each table, we present results for n = 500 in the top panel and for n = 1000

in the bottom panel. Moderate measurement quality is shown on the left side, and high

measurement quality on the right side. For each effect size (zero, small, medium, large), we

present results based on the three analytic approaches: the proposed model-based method

(Model), maximum-probability assignment (Assign), and multiple pseudo-class draws (P-C). Each

cell reflects the bias (i.e., mean estimated value minus true value) in the estimate of Z given C.

For example, Table 3 shows that for moderate measurement quality, n = 1000, and large effect

size, the bias in the estimated proportion of individuals in each latent class with a 1 on the binary

outcome was 0.003, -0.002, -0.016, -0.061, and -0.010 for Latent Classes 1, 2, 3, 4, and 5,

respectively. Recall from Table 1 that the true proportions for this cell were 0.006, 0.153, 0.300,

0.447, and 0.594. Negative values of bias indicate that the class-specific prevalence of the outcome

is underestimated. For the same set of conditions, the bias was from 2 to 10 times larger for the

maximum-probability assignment (0.035, 0.022, -0.105, -0.115, -0.091) and the multiple

pseudo-class draws (0.042, 0.023, -0.112, -0.130, -0.120) approaches.

Several general patterns emerged across results for the binary, continuous, and count distal

outcomes. First, as expected, when the effect size was set to zero, all three methods performed

equally well, in that bias was less than 0.01 for each latent class regardless of sample size,

measurement quality, or method. Second, because the prevalence of Latent Class 1 was

considerably larger than that of other latent classes (0.4; see Table 2), bias was consistently

smaller for this latent class. This was expected because, all other factors held constant, there is

more information available related to larger latent classes, making estimation more accurate.

Similarly, the bias was consistently larger for the smaller latent classes (Latent Classes 4 and 5)

because there was less information available for estimation. Third, as expected, as the strength of

the association between the latent class variable and the distal outcome strengthened, the
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potential for bias increased, and – importantly – the benefits of using a model-based approach

became more significant. Fourth, when the methods performed differentially, the model-based

approach consistently performed better than the two classify-analyze approaches. In every case,

the impact of using either maximum-probability assignment or multiple pseudo-class draws was

manifested by an attenuation of the effect of C on Z. That is, the more negative biases seen in

the two classify-analyze approaches confirmed our hypothesis that these methods would result in

underestimation of the distal outcome for the latent classes that are furthest from the mean on Z.

A somewhat surprising finding was that maximum-probability assignment worked at least

as well as the multiple pseudo-class draws technique in terms of bias/attenuation of the effect of

C on Z. This suggests that, in the long run, this simple classify-analyze approach is preferable to

the pseudo-class draws approach. However, the variability in the estimates across the 1000

replicates for the maximum-probability assignment approach was higher than that for the

multiple pseudo-class draws approach (not shown). Therefore, in empirical studies the

pseudo-class draws approach may be more reliable than maximum-probability assignment.

Regardless of this fact, however, the model-based approach introduced here performed

substantially better than either of the standard classify-analyze techniques.

One final important finding is that, in addition to the model-based approach being less

biased in the long run, this new method was shown to be consistent. That is, as n increased, bias

was reduced. However, sample size had essentially no effect on performance of the

maximum-probability assignment or pseudo-class draws methods; neither classify-analyze strategy

appeared to be consistent.

In sum, improving measurement quality (i.e., moving from item-response probabilities of .2

and .8 to probabilities of .1 and .9) had a substantial impact for all methods, such that bias was

reduced consistently by more than half for all methods. As discussed above, as the effect size

between C and Z increased, the potential for bias increased. With larger effect sizes, attenuation

increased much more in the two classify-analyze approaches than it did in the model-based

approach. All of these patterns emerged consistently for all types (binary, continuous, and count)
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of distal outcome. Thus, the model-based approach proposed here outperformed

maximum-probability assignment and multiple pseudo-class draws under every condition.

We next move to an empirical demonstration of the model-based approach to LCA with a

distal outcome. The motivating example involves latent classes of depression in adolescence.

Three distal outcomes are included for demonstration purposes: a binary outcome (regular

smoking), a continuous outcome (grades), and a count outcome (delinquency).

Conclusions

By applying Bayes’ theorem, we can capture information from a model that is

well-understood (LCA with covariates) and transform it into information that addresses this

exact research question. This is the foundation for the flexible model-based approach proposed

here. The critical pieces of information come from two sources. First, a latent class model is

specified with the distal outcome as a covariate in order to obtain the logistic regression

coefficients reflecting their association. Second, the class-conditional marginal density of Z is

estimated, for example using a kernel density estimation approach. The SAS macro %LCA distal

(Tan, Lanza, & Wagner, 2011), introduced here for estimating LCA with distal outcomes that are

categorical, continuous, or count variables, automates this approach.

A Monte Carlo simulation study was conducted to compare the performance of this new

approach to two classify-analyze approaches: maximum-probability assignment and multiple

pseudo-class draws. Simulation results show that the model-based approach produces

substantially less biased estimates of the effect compared to either classify-analyze technique,

particularly when the association between the latent class variable and the distal outcome is

strong. Although the RMSE was larger for the model-based approach in the case of no or small

effect size, as the strength of the effect of C on Z increased the relative performance reversed,

such that the model-based approach had smaller RMSE. Taken together, when a moderate to

strong relation exists between the latent class variable and the distal outcome, we recommend the

model-based approach because of its lower bias and lower RMSE. In addition, we show that only

the model-based approach exhibits the property of consistency (i.e., its performance improves as



Technical Introduction: LCA with Distal Outcomes 16

n increases).

In addition, we made several hypotheses regarding the factors examined in the simulation

study. We expected the performance of the model-based approach to be superior to that of both

classify-analyze approaches, regardless of the metric of the distal outcome (categorical,

continuous, and count). This was consistently supported in the simulation study. Our hypothesis

that the attenuation of effects would increase as the effect size increased was confirmed. In

addition, improving measurement quality resulted in better performance (i.e., less bias) for the

model-based approach and for both classify-analyze approaches. As expected, we observed no

improvement in the performance of either classify-analyze approach as sample size increased. For

the model-based approach, however, performance did improve as sample size increased, suggesting

that this method is statistically consistent.
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Appendix

SAS Syntax

This appendix provides SAS syntax for implementing the model-based approach to

estimating the probability of regular smoking in Grade 12 (Z) conditional on a depression latent

class variable (C) comprised of five classes and indicated by eight binary items.

*Estimate latent class model with binary distal outcome Z included as covariate;

proc lca data=outcomes start=baseline_start outparam=estimates_cigZ;

nclass 5;

items w1fs3 w1fs6 w1fs13 w1fs16 w1fs9 w1fs19 w1fs14 w1fs17;

categories 2 2 2 2 2 2 2 2;

covariates cig_t2;

reference 4;

run;

*Execute macro to obtain distribution of Z given C;

%LCA_distal(input_data = outcomes, /*input random sample*/

param = estimates_cigZ, /*dataset generated by outparam in PROC LCA*/

distal = cig_t2, /*distal outcome variable*/

metric = 1, /*1=binary, 2=continuous, 3=count, 4=categorical*/

output_dataset_name= Cig_results /*output results*/

);
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Table 1
Patterns of Z∣C: Specified true values for the distal outcome given latent class membership in the
simulation study

Latent Class

1 2 3 4 5 Effect Size

Binary Z

Pr{Z∣C} 0.300 0.300 0.300 0.300 0.300 = 0.0
Pr{Z∣C} 0.234 0.267 0.300 0.333 0.366 ≈ 0.1
Pr{Z∣C} 0.110 0.205 0.300 0.395 0.490 ≈ 0.3
Pr{Z∣C} 0.006 0.153 0.300 0.447 0.594 ≈ 0.5

Continuous Z (Conditional Normal)

E{Z∣C} 0.00 0.00 0.00 0.00 0.00 = 0.0
E{Z∣C} −0.14 −0.07 0.00 0.07 0.14 ≈ 0.1
E{Z∣C} −0.38 −0.19 0.00 0.19 0.38 ≈ 0.3
E{Z∣C} −0.64 −0.32 0.00 0.32 0.64 ≈ 0.5

Count Z (Conditional Poisson)

E{Z∣C} 0.80 0.80 0.80 0.80 0.80 = 0.0
E{Z∣C} 0.66 0.73 0.80 0.87 0.94 ≈ 0.1
E{Z∣C} 0.42 0.61 0.80 0.99 1.18 ≈ 0.3
E{Z∣C} 0.16 0.48 0.80 1.12 1.44 ≈ 0.5
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Table 2
Patterns of item-response probabilities: Two conditions for item-response probabilities specified in
the simulation study

Latent Class

1 2 3 4 5

LC Membership Probabilities 0.4 0.2 0.2 0.1 0.1

Moderate Measurement Quality

Could note shake blues 0.2 0.8 0.2 0.8 0.8
Felt depressed 0.2 0.8 0.2 0.8 0.8
Felt lonely 0.2 0.8 0.2 0.8 0.8
Felt sad 0.2 0.8 0.2 0.2 0.8
People unfriendly 0.2 0.2 0.8 0.2 0.8
Disliked by people 0.2 0.2 0.8 0.8 0.8
Life was failure 0.2 0.2 0.2 0.2 0.8
Life not worth living 0.2 0.2 0.2 0.2 0.8

High Measurement Quality

Could not shake blues 0.1 0.9 0.1 0.9 0.9
Felt depressed 0.1 0.9 0.1 0.9 0.9
Felt lonely 0.1 0.9 0.1 0.9 0.9
Felt sad 0.1 0.9 0.1 0.9 0.9
People unfriendly 0.1 0.1 0.9 0.9 0.9
Disliked by people 0.1 0.1 0.9 0.9 0.9
Life was failure 0.1 0.1 0.1 0.1 0.9
Life not worth living 0.1 0.1 0.1 0.1 0.9
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Figure Captions

Figure 1. Graphical representation of the latent class model with a distal outcome. C refers to

the latent class variable, X1, X2, ...XJ refer to manifest indicators of C, and Z refers to the distal

outcome.



C ZC Z

X1 X2 XJ…


