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Abstract

Recent advances in latent class analysis (LCA) have resulted in a rapid increase in the

application of this method in behavioral research. As scientific questions about the relation

between latent class membership and other variables of interest become more complex,

however, often they cannot be addressed in the context of the latent class model itself, but

must be addressed using a classify-analyze approach. These approaches rely on posterior

probabilities to classify individuals prior to the analysis of interest. Typically, the posterior

probabilities are generated using a non-inclusive LCA that includes manifest indicators but

not other variables of interest that are included in the analysis model; when the analysis

model is more general than the classification model, it is expected that the estimated

relations between latent class membership and the other variables are attenuated. We

propose the use of an inclusive LCA in which all variables included in the analysis model

are also included in the classification model. First, a motivating empirical demonstration is

presented to illustrate the use of four inclusive and four non-inclusive classify-analyze

approaches. Second, a simulation study is presented to assess the performance of these

approaches. Performance of inclusive versus non-inclusive approaches is compared, and the

impact of different levels of latent class measurement quality, effect size of relation, and

sample size are studied. Results show that bias in effect estimation using standard analysis

approaches is eliminated using an inclusive classify-analyze approach for LCA with

sufficient measurement quality or sample size.

Keywords: latent class analysis, posterior probabilities, pseudo-class draws,

classify-analyze
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An Introduction to Eliminating Bias in

Classify-Analyze Approaches for Latent Class Analysis

As application of latent class analysis (LCA) increases in the behavioral sciences,

more complex scientific questions are being posed about the role latent class membership

plays in development. For example, scientists are increasingly interested in the effect of

latent class membership on later developmental outcomes (e.g., Nylund, Bellmore, Nishina,

& Graham, 2007; Petras & Masyn, 2010; Roberts & Ward, 2011; Hardigan & Sangasubana,

2010; Reinke, Herman, Petras, & Ialongo, 2008). In particular, membership in latent

classes representing exposure to different combinations of risk factors during adolescence

may be related to a negative distal outcome during adulthood like binge drinking (e.g.,

Lanza & Rhoades, 2011). Further, complex questions arise when theory posits latent class

membership acting as a moderator or mediator in a model linking an individual’s earlier

experiences to later outcomes.

Examining the role played by a latent class variable in a developmental process

requires modeling its association with a variety of other variables of interest. Sometimes,

the associations between a latent class variable and other variables of interest can be

modeled in the context of the latent class model itself. This is desirable because it allows

measurement error to be estimated and removed from the estimates of interest. However,

there remain many questions that cannot be addressed within the context of the latent

class model because the posited relations are more complex than our current understanding

of the model can handle. In these cases, a classify-analyze approach (Clogg, 1995) may be

required. This involves first classifying individuals into latent classes, and then performing

a subsequent analysis using latent class membership as a categorical variable in a larger

model of interest. The nature of latent class variables is such than an individual’s true

class membership cannot be known. Instead, each individual has a probability of

membership in each latent class; these probabilities are known as posterior probabilities.

All methods for classifying individuals are based on posterior probabilities derived from the
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latent class measurement model.

Below we briefly review the latent class model and review current classify-analyze

approaches for LCA. We then propose the use of a more inclusive latent class model for

deriving the posterior probabilities in order to reduce attenuation of the effects between

latent class membership and other variables of interest. Our motivating example involves

the identification of risk exposure latent classes on the basis of six characteristics:

household poverty, single-parent status, peer cigarette use, peer alcohol use, neighborhood

unemployment, and neighborhood poverty (Lanza & Rhoades, 2011). In this example,

latent class membership is used to predict later binge drinking. A simulation study is then

conducted to evaluate the performance of the more inclusive latent class model.

The Latent Class Model

The latent class model has been described in detail in a variety of resources (e.g.,

Collins & Lanza, 2010; Lanza, Collins, Lemmon, & Schafer, 2007; Clogg, 1995; Goodman,

1974b) and applied to model a variety of constructs in the psychological and behavioral

sciences (e.g., Reboussin, Song, Shrestha, Lohman, & Wolfson, 2006; Biemer & Wiesen,

2002; Loken, 2004). Details of the latent class model relevant to classify-analyze

approaches for LCA are briefly discussed below.

The traditional latent class model posits a mutually exclusive and exhaustive

underlying set of latent classes (i.e., subgroups) in the population that are inferred from

multiple categorical observed variables. Suppose that there are j = 1, ..., J observed

variables measuring the latent classes, and that observed variable j has rj = 1, ..., Rj

response categories. Let y = (r1, ..., rJ) represent the vector of a particular individual’s

responses to the J variables. Let C represent the latent variable with c = 1, ..., K latent

classes. Finally, I(yj = rj) is an indicator function that equals 1 when the response to
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variable j = rj, and equals 0 otherwise. Then the latent class model can be expressed as

P (Y = y) =
K∑
c=1

γc

J∏
j=1

Rj∏
rj=1

ρ
I(yj=rj)
j,rj |c , (1)

where γc is the probability of membership in latent class c, and ρI(yj=rj)
j,rj |c is the probability

of response rj to item j, conditional on membership in latent class c. The γ parameters

represent a vector of latent class membership probabilities that sum to 1. The ρ parameters

represent a matrix of item-response probabilities conditional on latent class membership.

This traditional model can be extended to include covariates (e.g., Collins & Lanza, 2010;

Lanza & Collins, 2008; Chung, Flaherty, & Schafer, 2006). When a covariate X is added to

the latent class model to predict latent class membership, the model can be expressed as

P (Y = y|X = x) =
K∑
c=1

γc(x)
J∏
j=1

Rj∏
rj=1

ρ
I(yj=rj)
j,rj |c , (2)

where γc(x) = P (C = c|X = x) is a standard baseline-category multinomial logistic model

(e.g., Agresti, 2002). With a single covariate, γc(x) can be expressed as

γc(x) = P (C = c|X = x) = eβ0,c+β1,cx

1 +
∑K−1

c′=1 e
β0,c′ +β1,c′x

(3)

for c′ = 1, ..., K − 1 and reference latent class K. Once the parameters of the latent class

model have been estimated, posterior probabilities of membership in each latent class can

be obtained for each individual using Bayes’ Theorem (e.g., Gelman, Carlin, Stern, &

Rubin, 2003; Lanza et al., 2007). Posterior probabilities can be calculated both when

covariates are not included in the LCA,

P (C = c|Y = y) = P (C = c)P (Y = y|C = c)
P (Y = y) , (4)
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and when covariates are included in the LCA,

P (C = c|Y = y, x) = P (C = c|x)P (Y = y|C = c, x)
P (Y = y|x) . (5)

Cohen’s w (Cohen, 1992) can be used as a measure of effect size, indicating the

strength of the relation between latent class membership (C) and a categorical distal

outcome (Z). The effect size is calculated as follows:

w =

√√√√ m∑
i=1

K∑
c=1

(πcπi|c − πi)2

πi
, (6)

where m is the number of categories of the distal outcome, πc is P (C = c), πi|c is

P (Z = i|C = c), and πi is P (Z = i).

Classify-Analyze Approaches for LCA

LCA is a probability-based approach that does not require assignment of individuals

to latent classes; this is one of its greatest strengths because it provides a way to account

for measurement error in responses to manifest indicators. There are times, however, when

scientists must assign individuals to latent classes so that class membership can be used in

a subsequent analysis as an exogenous or endogenous variable.

Currently, two popular classify-analyze approaches for LCA are used in practice.

Both approaches rely on posterior probabilities to classify individuals. The first approach is

a maximum-probability assignment rule (Nagin, 2005, pg. 80), which assigns individuals to

the class for which they have the highest posterior probability of membership (Goodman,

2007, 1974a). The subsequent analysis is performed once with latent class membership

treated as known. Although this simple method does not take into account uncertainty of

class assignment (Clogg, 1995), it minimizes the number of incorrect assignments compared

to other approaches (Goodman, 2007).



CLASSIFY-ANALYZE FOR LCA 8

The second approach is multiple pseudo-class draws (Bandeen-Roche, Miglioretti,

Zeger, & Rathouz, 1997). This approach is similar to maximum-probability assignment but

accounts for uncertainty in class assignment. Using this method, individuals are classified

into latent classes multiple times based on their distributions of posterior probabilities.

Often, 20 pseudo-class draws are used; that is, individuals are classified 20 times (Wang,

Brown, & Bandeen-Roche, 2005). The subsequent analysis is performed once for each draw

(i.e., 20 times) and results are combined across draws using rules derived for multiple

imputation for missing data (Rubin, 1987). This technique was originally developed as a

diagnostic tool to assess model adequacy (Bandeen-Roche et al., 1997; Wang et al., 2005);

that is, the technique was not developed to generate classifications for use in subsequent

analysis.

The posterior probabilities upon which both of these approaches depend are

calculated from an LCA with a specified number of latent classes. Typically, this LCA only

includes manifest indicators and does not include other variables (e.g., moderators,

mediators, outcomes) that are included in the subsequent analysis. For example, consider

the case of predicting a distal outcome from a latent class variable. A routine approach to

this problem is to (1) determine the optimal number of latent classes by fitting and

comparing models that only include the manifest indicators of interest, (2) use the

parameter estimates from the selected model to calculate posterior probabilities of latent

class membership for all individuals (i.e., the classification model), (3) use the posterior

probabilities to classify individuals into latent classes using maximum-probability

assignment or multiple pseudo-class draws, (4) conduct an analysis to estimate the relation

between latent class membership (treated as known) and the distal outcome, for example,

by regressing the distal outcome on classification (i.e., the analysis model). With this

routine approach, the distal outcome is not included in the classification model (i.e.,

non-inclusive maximum-probability assignment or non-inclusive multiple pseudo-class

draws). From the multiple imputation literature, because the distal outcome was not
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included in the classification model but was included in the analysis model, it is expected

that the estimated relation between latent class membership and the distal outcome will be

attenuated (e.g., Collins, Schafer, & Kam, 2001; Schafer, 1997). In particular, with a

non-inclusive approach, we would expect attenuation to increase with the strength of the

true relation. This attenuation is starting to be recognized as an important issue (Clark &

Muthén, 2009).

We propose an alternative, inclusive approach in which all variables to be included in

the analysis model are included as covariates in the classification model. In other words,

the LCA used to obtain the posterior probabilities is generalized to include all variables

used in the analysis model, ensuring that the imputation (i.e., classification) model is as

general as the analysis model. In the current example, the distal outcome would be

included as a covariate in the latent class model from which the posterior probabilities are

calculated. Because the distal outcome is included in both the classification and analysis

models, we expect an inclusive approach (i.e., inclusive maximum-probability assignment

or inclusive multiple pseudo-class draws) to produce a more accurate estimate of the

relation between latent class membership and the distal outcome. We reiterate, though,

that this approach is more general than just the example of using latent class membership

to predict a distal outcome.

Purpose of the Current Study

The primary objective of the current study is to compare the performance of the

proposed inclusive classify-analyze approach for LCA with the current practice of a

non-inclusive approach. First, a motivating empirical demonstration is presented. This

demonstration examines the relation between risk exposure latent class membership and

later binge drinking. Second, a simulation study based on the demonstration is conducted

to examine the inclusive and non-inclusive classify-analyze approaches. This study was

designed to mimic the empirical demonstration, and includes five latent classes of risk
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exposure and a binary distal outcome. The influence of several factors on the performance

of each approach is examined, including quality of the LCA measurement model, strength

of the relation between the latent classes and distal outcome (i.e., effect size), and sample

size. Both the empirical demonstration and simulation study estimate the effect of latent

class membership on the distal outcome using eight different approaches: (1)

maximum-probability assignment with a standard (i.e., non-inclusive) LCA; (2)

maximum-probability assignment with an inclusive LCA; (3) single pseudo-class draw with

a standard LCA; (4) 20 pseudo-class draws with a standard LCA; (5) 40 pseudo-class

draws with a standard LCA; (6) single pseudo-class draw with an inclusive LCA; (7) 20

pseudo-class draws with an inclusive LCA; (8) 40 pseudo-class draws with an inclusive

LCA.

Empirical Demonstration

The purpose of this empirical demonstration is to illustrate the proposed inclusive

classify-analyze approaches for LCA. This demonstration is based on the relatively simple

case of predicting a distal outcome from latent class membership. Six manifest variables

indicating exposure to various risk factors were used to identify the latent class variable,

risk exposure. Risk exposure latent class membership then was used to predict the distal

outcome, binge drinking in the past year, using the eight approaches listed above. This

demonstration, including the participants and measures, was based on work by Lanza and

Rhoades (2011).

Participants

Data were from Wave I and Wave II of the public-use data from the National

Longitudinal Study of Adolescent Health (Add Health; Harris, 2009; Harris et al., 2009).

The sample consisted of n = 844 adolescents who were in 8th grade at Wave I (53% female;

mean age = 14.5 years, SD = .86; 72% White, 20% Black, 3% Asian, 5% Other; 11%

Hispanic). Only participants who provided data on exposure to at least one risk factor at
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Wave I and provided data on binge drinking at Wave II were included in the sample. This

sample was smaller than that used in the original study because the restricted-use data

were not included.

Measures

Indicators of Risk Exposure. Measures of the latent class variable, risk

exposure, included two indicators of household risk, two indicators of peer risk, and two

indicators of neighborhood risk, all assessed at Wave I. For household risk, adolescents were

considered to be at risk for household poverty if their household income-to-needs ratios were

below 1.85; they were considered to be at risk for single-parent household if they lived with

a parent/caregiver who was widowed, divorced, separated, or never married at the time of

assessment. For peer risk, adolescents were considered to be at risk for peer cigarette use if

one or more of their three best friends smoked at least one cigarette per day; similarly, they

were considered to be at risk for peer alcohol use if one or more of their three best friends

drank alcohol at least once per month. For neighborhood risk, adolescents were considered

to be at risk for neighborhood unemployment if they lived in a census block where the

unemployment rate was greater than 10.9% (Billy, Wenzlow, & Grady, 1998); they were

considered to be at risk for neighborhood poverty if they lived in a census block where at

least 23.9% of the households were living below the poverty level in 1989 (Billy et al., 1998).

Binge Drinking. The distal outcome, binge drinking, was measured using a single

indicator, assessed at Wave II. Adolescents were considered to be past-year binge drinkers

if they reported drinking five or more drinks in a row on one or more days in the past 12

months; 24.8% of adolescents reported binge drinking.

Analysis

First, LCA was used to confirm that the 5-class model identified by Lanza and

Rhoades (2011) was optimal for the public-use sample selected for the current

demonstration. Second, posterior probabilities were calculated with the selected model
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using both an inclusive LCA (i.e., with binge drinking included as a covariate) and a

non-inclusive LCA (i.e., without binge drinking included as a covariate). Third, the eight

classify-analyze approaches listed previously were implemented based on posterior

probabilities derived from the inclusive and non-inclusive LCAs. These eight approaches

were used to calculate the proportion of adolescents reporting past-year binge drinking

given latent class membership.

The data analysis was generated using SAS V9 software. Inclusive and non-inclusive

LCAs were conducted with PROC LCA (Lanza, Dziak, Huang, Xu, & Collins, 2011);

PROC LCA and the corresponding users’ guide are available for free download at

methodology.psu.edu/downloads. Annotated SAS code relating latent class membership

to the distal outcome using both inclusive and non-inclusive approaches is available in the

Appendix.

Results

First, to confirm that the 5-class model was optimal, LCAs with 1-6 classes were

compared based on model fit, parsimony, and stability using the Akaike information

criterion (AIC; Akaike, 1974), Bayesian information criterion (BIC; Schwartz, 1989),

consistent AIC (CAIC; Bozdogan, 1987), adjusted BIC (a-BIC; Sclove, 1987), bootstrap

likelihood ratio test (BLRT; McLachlan & Peel, 2000), entropy R2 (Celeux & Soromenho,

1996), and G2 fit statistic. Solution stability was based on the proportion of times the

maximum-likelihood solution was selected out of 1000 random sets of starting values

(Solution %). As expected, the 5-class model was selected as optimal; a summary of the fit

criteria is shown in Table 1.

The overall proportion of adolescents who were exposed to each risk factor and the

parameter estimates for the 5-class model are shown in Table 2. The latent classes

comprising the 5-class model lent themselves to straightforward interpretations, similar to

those by Lanza and Rhoades (2011). The first latent class was labeled Low Risk (with a
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prevalence of .41) because members had low probabilities of exposure to all six risk factors.

In comparison, the second latent class was labeled Peer Risk (.22) because members had

high probabilities of exposure to Peer Cigarette Use and Peer Alcohol Use, but low

probabilities of exposure to the other four risk factors. Using a similar approach, the third

and fourth latent classes were labeled Economic Risk (.19) and Household & Peer Risk

(.13), respectively. The fifth latent class was labeled Multi-Risk (.04) because members had

high probabilities of exposure to all six risk factors.

Second, posterior probabilities from the 5-class model were retained as the basis for

the non-inclusive approaches. Then, binge drinking was added to the LCA as a covariate in

order to generate and retain the posterior probabilities used as the basis for the inclusive

approaches. Notably, binge drinking was significantly related to latent class membership

(df = 4, p < .0001). The odds of membership in the Peer Risk (OR = 5.6), Economic Risk

(OR = 1.1), Household & Peer Risk (OR = 13.2), and Multi-Risk (OR = 4.8) latent classes

relative to the Low Risk latent class were higher for binge drinkers compared to those who

did not binge drink.

Third, the effect of risk exposure latent class membership on binge drinking was

examined using the eight approaches listed previously. Estimates of the proportion of

adolescents reporting past-year binge drinking conditional on risk exposure latent class

membership are shown in Table 3. Using Cohen’s w as a measure of effect size, there was a

medium-sized effect of risk exposure on binge drinking (w = .42). The proportion of

adolescents reporting binge drinking across all latent classes was .25.

As shown in Table 3, adolescents in the Low Risk and Economic Risk latent classes

were less likely to report binge drinking compared to adolescents in the Peer Risk,

Household & Peer Risk, and Multi-Risk latent classes. The estimates of the proportions,

however, differed substantially depending on the approach used. Non-inclusive approaches

provided class-specific estimates closer to the marginal proportion of .25 compared to using

an inclusive approach. For example, the non-inclusive 20 pseudo-class draws approach
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estimated that 39% of Household & Peer Risk adolescents reported binge drinking; the

corresponding inclusive approach produced an estimate of 62%. This is consistent with our

expectation that proportion estimates are attenuated with a non-inclusive approach.

Additionally, the non-inclusive maximum-probability assignment and multiple

pseudo-class draws approaches provided similar estimates, as did the inclusive

maximum-probability assignment and multiple pseudo-class draws approaches. For

example, using an inclusive approach and a maximum-probability assignment rule, it was

estimated that 11% of Low Risk adolescents reported binge drinking, compared to an

estimated 11% using the inclusive 20 pseudo-class draws approach. This raises the question

of whether multiple pseudo-class draws really do provide more accurate estimates to justify

the additional computational burden. To examine the issues of attenuation and

performance in detail, a simulation study was conducted using the empirical demonstration

as a basis for its design.

Comparing Non-Inclusive and Inclusive Classify-Analyze Approaches:

A Simulation Study

The simulation study was designed to assess the performance of the eight

classify-analyze approaches for LCA listed previously. The primary objective was to

compare the performance of inclusive and non-inclusive approaches. Secondary objectives

were to compare maximum-probability assignment to multiple pseudo-class draws, and to

compare performance of all approaches across measurement quality conditions, effect sizes,

and sample sizes.

Design

Three factors were considered in this study because they were expected to have a

large impact on the performance of inclusive and non-inclusive classify-analyze approaches

for LCA. First, measurement quality is directly linked to posterior probability estimates; as

measurement quality increases, measurement error decreases, and posterior probabilities
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move closer to 0 and 1, indicating greater confidence in class assignment. Second, if it is

true that effects estimated using non-inclusive approaches are attenuated, as hypothesized,

this attenuation will be more pronounced for stronger relations between latent class

membership and the distal outcome. Thus, strength of the association between the latent

class variable and distal outcome (i.e., effect size) was examined. Third, sample size affects

estimation of both the latent class model and the relation between the latent classes and

distal outcome; larger samples provide more information for parameter estimation. The

simulation was designed to correspond to the empirical demonstration. Five latent classes,

corresponding to Low Risk, Peer Risk, Economic Risk, Household & Peer Risk, and

Multi-Risk, were measured using six binary indicators. Latent class membership

proportions (i.e., γ parameters) were held constant across all conditions: .40 for Low Risk,

.20 for Peer Risk, .20 for Economic Risk, .10 for Household & Peer Risk, and .10 for

Multi-Risk (see Table 4).

Measurement Quality. Four sets of ρ parameters that represent different levels of

measurement quality in the item-response probabilities were considered: real life, high

quality, medium quality, and low quality. True values for the ρ parameters for each latent

class for each measurement quality condition are shown in Table 4. The ‘real life’ condition

was based on the item-response probability estimates presented in the empirical

demonstration (see Table 2), whereas the remaining conditions were designed to reflect

high, medium, and low measurement quality while maintaining interpretation.

Effect Sizes. Five Cohen’s w effect sizes that represent different strengths of the

relation between the latent classes and distal outcome were considered: real life (.42), large

effect (.50), medium effect (.30), small effect (.10), and no effect (.00). For each effect size,

true values for the proportion of individuals binge drinking in the past year conditional on

latent class membership are shown in Table 5. The overall proportion of binge drinking

differed somewhat across different effect sizes, ranging from .19 to .30. The ‘real life’

condition was selected to mimic that of the empirical demonstration, whereas the
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remaining conditions were designed to reflect decreasing strength in the relation between

the latent classes and distal outcome.

Sample Sizes. Two sample sizes were considered: large (n = 800), which roughly

equaled that of the empirical demonstration, and small (n = 400).

Process

A single cell of the simulation represents one combination of measurement quality,

effect size, and sample size conditions. The following Monte Carlo procedure was used in

each of the 40 cells of the simulation.

Data Generation. Given (a) the latent class model specified by the latent class

membership probabilities and item-response probabilities, (b) the strength of the

association between latent classes and distal outcome, and (c) the sample size, random

observations were generated by (1) generating a latent class variable from a multinomial

distribution specified by the latent class membership proportions, (2) generating item

responses based on the item-response probabilities, and (3) generating outcomes based on

the multinomial logistic regression model linking latent class membership and the distal

outcome. Random observations were generated to create 1000 replicate datasets.

Classification Step. In order to generate posterior probabilities using an inclusive

approach and a non-inclusive approach, two LCAs were conducted on each replicate

dataset. The inclusive LCA included the distal outcome as a covariate; the non-inclusive

LCA did not include the distal outcome as a covariate. To ensure model identification in

the non-inclusive LCAs, 100 random sets of starting values were used; parameter estimates

from the maximum-likelihood solution were used as starting values for the inclusive LCAs.

Then, a maximum-probability assignment rule was used to infer class membership based on

posterior probabilities from the non-inclusive LCAs, and again based on posterior

probabilities from the inclusive LCAs. Finally, multiple pseudo-class draws (e.g., 1, 20, or

40) were used to infer class membership based on posterior probabilities from the
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non-inclusive LCAs, and again based on posterior probabilities from the inclusive LCAs.

Analysis Step. Using each of the eight approaches, the effect of latent class

membership on the distal outcome was estimated by calculating the proportion of

observations with the distal outcome conditional on latent class membership. The

estimated relation between latent class membership and the distal outcome was compared

to the true values shown in Table 5.

Results

Inclusive Versus Non-Inclusive Approaches. In order to summarize the results

concisely, results for the Household & Peer Risk latent class are discussed. This latent class

was small and had the highest prevalence of binge drinking; thus, this set of results is ideal

for studying the performance of the eight approaches. Simulation results for this latent

class are shown in Table 6 for the small sample size and in Table 7 for the large sample

size. Each cell contains the bias (i.e., mean estimated value minus true value) and root

mean square error (RMSE; i.e.,
√

bias2 + stderr2 where ‘stderr’ is the standard error of the

1000 estimated values) for the estimate of the effect of Household & Peer Risk latent class

membership on binge drinking (i.e., proportion of adolescents reporting binge drinking).

For example, Table 6 shows that for high measurement quality, large effect size, and small

sample size, the bias in the estimated proportion of adolescents in the Household & Peer

Risk latent class reporting binge drinking was -.119 and -.034 for non-inclusive and

inclusive maximum-probability assignment, respectively, and was -.134 and -.045 for

non-inclusive and inclusive 20 pseudo-class draws, respectively. In other words, the

proportion of adolescents binge drinking was underestimated using the standard approach.

For maximum-probability assignment and all pseudo-class draws approaches, the bias

was smaller for the inclusive approaches than the non-inclusive approaches. For example,

Table 7 shows that with medium measurement quality, large sample size, and

maximum-probability assignment, the inclusive approach resulted in biases of -.007, -.021,
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-.010, and -.001 for large, medium, small, and no effect, respectively, compared to biases of

-.253, -.136, -.052, and -.002 using the non-inclusive approach. As expected, relying on a

standard (i.e., non-inclusive) approach produced estimates of the effect that were

substantially attenuated, such that the estimated proportion of adolescents binge drinking

conditional on latent class membership was severely underestimated for Household & Peer

Risk. The results across all five latent classes showed this pattern consistently1. In sum,

across all conditions and all latent classes, when a non-inclusive approach was used, the

estimated proportions of binge drinking were closer to the overall proportion than the true

class-specific proportions (i.e., the association was attenuated); that is, binge drinking was

under-reported for the Peer Risk, Household & Peer Risk, and Multi-Risk latent classes,

and over-reported for the Low Risk and Economic Risk latent classes.

Maximum-Probability Assignment Versus Pseudo-Class Draws. For both

non-inclusive and inclusive approaches, the bias was smaller for maximum-probability

assignment compared to multiple pseudo-class draws2. For example, Table 7 shows that

with high measurement quality, large effect size, and large sample size, the bias for

non-inclusive maximum-probability assignment was -.115 and was -.133, -.132, and -.132

for non-inclusive pseudo-class draws with 1, 20, and 40 draws, respectively. Similarly, the

biases for the corresponding inclusive approaches were -.012, -.033, -.032, and -.033.

When a non-inclusive approach was used, maximum-probability assignment

consistently had smaller RMSEs compared to the pseudo-class draws approaches for large

and medium effect sizes, but consistently had larger RMSEs for small and no effect sizes.

In contrast, when an inclusive approach was used, the pseudo-class draws approaches

consistently had smaller RMSEs compared to maximum-probability assignment,

particularly as measurement quality or effect size decreased. For example, with low

1Additional results for the other four latent classes are not shown, but are available upon request to the
corresponding author.

2The one exception is for the inclusive approach with real life measurement quality and a large sample
size; the bias for the multiple pseudo-class draws approaches is smaller than that of maximum-probability
assignment for all effect sizes.
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measurement quality and small sample size, the RMSE for the inclusive

maximum-probability assignment approach (see Table 6) was .358, .272, .206, and .184 for

large, medium, small, and no effect, respectively, compared to RMSEs of .359, .250, .173,

and .154 using the inclusive 20 pseudo-class draws approach. Interestingly, when a

non-inclusive approach was used, this tendency was not evident. In addition, comparing 20

and 40 pseudo-class draws for both inclusive and non-inclusive approaches suggests that

using 20 draws performed as well as using 40 draws, both in terms of bias and RMSE.

Factors Affecting Performance. As measurement quality increased, all

approaches were less biased, but inclusive approaches still performed better than

non-inclusive approaches. For example, for a real life effect size, large sample size, and the

inclusive 20 pseudo-class draws approach (see Table 7), bias decreased from -.181 to -.065

when measurement quality increased from low to medium, and further decreased from -.065

to -.018 when measurement quality increased from medium to high. A similar pattern was

seen for the non-inclusive 20 pseudo-class draws approach (-.308 to -.200 to -.077).

As effect size increased (i.e., strength of the relation between latent class membership

and distal outcome increased), attenuation of the estimated effect increased, and was

particularly pronounced when non-inclusive approaches were used. For example, for

medium measurement quality, large sample size, and the non-inclusive 20 pseudo-class

draws approach (see Table 7), bias increased from -.060 to -.156 to -.287 as the effect size

increased from small to medium to large. In comparison, for the inclusive approach, it

increased from -.021 to -.047 to -.061 as the effect sized increased from small to medium to

large.

As sample size increased, all approaches were less biased, but inclusive approaches

still performed better than non-inclusive approaches. For example, increasing the sample

size from small to large decreased the bias from -.044 to -.003 for real life measurement

quality, real life effect size, and the inclusive 20 pseudo-class draws approach; for the

non-inclusive approach, the bias decreased from -.157 to -.130 (see Tables 6 and 7).



CLASSIFY-ANALYZE FOR LCA 20

Importantly, increasing measurement quality appeared to decrease the bias more than

doubling the sample size. Overall, even with inclusive approaches, results were quite biased

when sample size was small, effect size was large, and measurement quality was low. In

contrast, with inclusive approaches, bias was nearly eliminated with medium or high

measurement quality and a large sample size, or high measurement quality and a small

sample size.

Discussion

Motivated by an examination of the effect of risk exposure latent class membership

on binge drinking, this study demonstrated the importance of using an inclusive approach

when implementing classify-analyze for LCA. Based on results of the Monte Carlo study,

we recommend that applied scientists employ an inclusive LCA for obtaining the posterior

probabilities on which classify-analyze approaches are based. Interestingly, our study

showed no improvement using multiple pseudo-class draws over maximum-probability

assignment when a standard (i.e., non-inclusive) approach was taken; maximum-probability

assignment was both less biased and less variable unless the effect was small or

non-existent, at which point it was still less biased but slightly more variable. Using an

inclusive approach over a non-inclusive one resulted in large improvements in performance,

both in terms of bias and variability; using maximum-probability assignment with an

inclusive approach was the least biased overall, but using 20 or more pseudo-class draws

with an inclusive approach was considerably less variable, particularly with lower levels of

measurement quality.

This study showed that a classify-analyze approach for relating latent class

membership to other variables of interest can be used to obtain unbiased estimates,

provided that an inclusive LCA is used to obtain the posterior probabilities. This is

consistent with the literature on multiple imputation for missing data (e.g., Collins et al.,

2001) that emphasizes the importance of imputing data under a model that is at least as
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general as the subsequent analysis model. We reiterate that this approach is recommended

when a classify-analyze approach for LCA is necessary. For example, the model for LCA

with covariates is well-understood (e.g., Lanza & Collins, 2008), so addressing questions

about predictors of latent class membership need not be addressed using classify-analyze

approaches.

Comparison of Approaches

Three general conclusions can be drawn when comparing the different classify-analyze

approaches. First, an inclusive approach was less biased than a non-inclusive approach. As

expected, when a non-inclusive approach was used, the effect of latent class membership on

the distal outcome was attenuated. When an inclusive approach was used, effect estimates

were unbiased with sufficiently strong measurement quality or sufficiently large sample size.

Second, inclusive and non-inclusive maximum-probability assignment actually

outperformed inclusive and non-inclusive multiple pseudo-class draws in terms of bias, but

inclusive multiple pseudo-class draws with a sufficiently large number of draws had a

smaller RMSE. This suggests that although maximum-probability assignment is less biased

overall, multiple pseudo-class draws is less variable across individual datasets when an

inclusive approach is used; thus, we recommend this approach for substantive applications.

Third, using 40 pseudo-class draws compared to 20 pseudo-class draws did not result in

reduced bias or RMSE. Therefore, the standard practice of using 20 pseudo-class draws

appears to be sufficient.

Comparison of Latent Class Model Features

The design of the simulation allowed an evaluation of the influence of different

features of the latent class model, including measurement quality, effect size, and sample

size. As the measurement quality of the latent class model increased, both inclusive and

non-inclusive approaches were less biased although inclusive approaches consistently

performed better. As the effect of latent class membership on the distal outcome became
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stronger, the bias increased for non-inclusive approaches and inclusive approaches;

however, inclusive approaches performed considerably better and were unbiased with

sufficiently strong measurement quality or sufficiently large sample size. As sample size

increased, both inclusive and non-inclusive approaches were less biased although inclusive

approaches consistently performed better. Importantly, stronger measurement quality

appeared to improve performance markedly more than increasing the sample size.

Recommendations

In general, estimates of the effect of latent class membership on the distal outcome

were most biased using a non-inclusive approach with small sample size, low measurement

quality, and large effect size. Conversely, results appeared to be unbiased with an inclusive

approach with medium or high measurement quality and a large sample size, and with high

measurement quality and a small sample size. Combined with previous work on LCA (e.g.,

Lanza et al., 2007), the results of the current study suggest a series of steps when using

classify-analyze approaches for LCA: (1) determine the optimal number of latent classes by

fitting and comparing models without covariates included in the model; (2) after the

optimal model has been selected and interpreted, re-fit the latent class model with the

other variables of interest included as covariates to produce posterior probabilities using an

inclusive approach; (3) use multiple pseudo-class draws with at least 20 draws for the

‘classification’ step of the classify-analyze approach; (4) treat class membership as known

to perform the desired analysis for each dataset generated by the multiple pseudo-class

draws for the ‘analysis’ step of the classify-analyze approach; (5) combine results across

datasets (i.e., across pseudo-class draws) for the final results.

Software

All modern statistical software packages for LCA, including PROC LCA (Lanza et

al., 2011), Mplus (Muthén & Muthén, 1998-2007), and Latent GOLD (Vermunt &

Magidson, 2005), can be used to calculate posterior probabilities of latent class
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membership using the non-inclusive approach. Further, other variables of interest can be

included as covariates in any of these programs, so that an inclusive classify-analyze

approach can be used. Then, posterior probabilities can be used in any statistical software

package (e.g., SAS, SPSS, STATA) to assign individuals to latent classes (a) once based on

a maximum-probability assignment rule, or (b) multiple times using multiple pseudo-class

draws. Sample SAS code for doing this appears in the Appendix.

Classification Error

All classify-analyze approaches to assigning individuals to latent classes for

subsequent analysis are based on posterior probabilities derived from the latent class

measurement model. Estimates of the relation between latent class membership and other

variables of interest are unbiased using an inclusive approach because the posterior

probabilities generated from an inclusive LCA provide more accurate classifications than

do those from a non-inclusive LCA. Several methods for evaluating classification error (i.e.,

classification uncertainty) have been proposed in the context of latent class model

evaluation. For example, Goodman (2007) discusses two criteria to assess when an

assignment procedure is adequate. The criteria can be used to estimate the proportion of

incorrect assignments when a maximum-probability assignment rule and single

pseudo-class draw are used. In addition, Vermunt and Magidson (2002) use the

Goodman-Kruskal lambda and Goodman-Kruskal tau to assess assignment in addition to

the proportion of incorrect assignments; they also use several indices that combine

information about model fit and classification errors, including entropy R2, classification

likelihood, and approximate weight of evidence (Celeux & Soromenho, 1996). Finally, in

the context of classes of developmental trajectories, it has been suggested that when the

mean posterior probability of class membership for individuals assigned to each class

exceeds .70, hypothesis tests of differences across classes may be unaffected (Roeder,

Lynch, & Nagin, 1999; White, Nagin, Replogle, & Stouthamer-Loeber, 2004; Nagin, 2005).
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However, in our empirical demonstration, the mean posterior probabilities of membership

for individuals assigned to each class ranged from .84 (Household & Peer Risk) to .93

(Economic Risk) for the non-inclusive maximum-probability assignment approach, and this

approach showed considerable bias in the simulation study. In comparison, the mean

posterior probabilities ranged from .82 (Household & Peer Risk) to .92 (Economic Risk) for

the inclusive maximum-probability assignment approach, and this approach performed very

well in the simulation study. In sum, regardless of whether classifications can be considered

‘adequate’ or ‘satisfactory’ based on these criteria, we have demonstrated that relations

between latent class membership classification and other variables will be attenuated if

these variables are not included in the model used to generate the posterior probabilities

upon which the classifications are based.

Limitations

There are two primary limitations to the current simulation study. First, as with any

simulation study, conclusions about the results are limited to the set of conditions that

were examined. For example, the current study did not examine different distributions of

latent class membership proportions. Thus, our findings cannot be generalized to the case

where, for example, latent classes are of equal size. Future simulation studies should

consider how relative class size may interact with other factors in determining the

performance of inclusive versus non-inclusive approaches.

Second, this study only examined the relatively simple case of using classify-analyze

to predict a single distal outcome from latent class membership. Research questions posing

complex relations, such as a latent class variable as a moderator or mediator, would require

that multiple variables be included as covariates in the classification step. Extrapolating

from the results here and the known impact of imputing data under a classification model

that is more restrictive than the analysis model (e.g., Schafer, 1997; Collins et al., 2001),

we believe that failure to include all additional variables of interest, along with relevant
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interactions, in the estimation of the posterior probabilities will result in significant

attenuation of the effects in the subsequent analysis step. However, the magnitude of

attenuation in a variety of more complex scenarios needs to be investigated in future

studies.

Conclusions

As research questions regarding the role of latent class membership in developmental

processes become more complex, it is increasingly difficult to address all questions within

the context of the latent class model itself. Addressing questions within the context of the

latent class model itself is desirable because it allows measurement error to be estimated

and removed from parameter estimates; this approach does not require the classification of

individuals to latent classes. When a question cannot be addressed in this context,

however, a classify-analyze approach is required. The current study showed that standard,

non-inclusive classify-analyze approaches for LCA that do not include other variables of

interest in the model during the classification step produce substantially attenuated effect

estimates in the analysis step. We demonstrated a straightforward solution, that of fitting

an inclusive LCA to derive posterior probabilities, which can be readily adopted by

scientists to reduce or eliminate bias in the associations between a latent class variable and

other variables of interest. This approach opens the door to broaden modeling approaches

when a latent class variable is embedded in a complex model.
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Appendix

Syntax for SAS Software

The data analysis was generated using SAS V9 software. Non-inclusive and inclusive LCAs

were conducted with PROC LCA (Lanza et al., 2011); PROC LCA and the corresponding

users’ guide are available for free download at methodology.psu.edu/downloads.

Annotated code to assign individuals to latent classes and perform the analysis relating

latent class membership to the distal outcome is available below.

Step 1: Retain Posterior Probabilities from Non-inclusive LCA

PROC LCA DATA=ca.mbrlca outparam=lca_start_ni outpost=lca_post_ni;
TITLE1 ’Five Risk Classes, Non-inclusive’;
ID newaid bio_sex yr2_binge_gv;
NCLASS 5;
ITEMS HH_poverty single peer_cig peer_alc unemp below_pov;
CATEGORIES 2 2 2 2 2 2;
SEED 452035948;

RUN;

Step 2: Retain Posterior Probabilities from Inclusive LCA

PROC LCA DATA=ca.mbrlca outparam=lca_start_i outpost=lca_post_i;
TITLE1 ’Five Risk Classes, Inclusive’;
ID newaid bio_sex yr2_binge_gv;
NCLASS 5;
ITEMS HH_poverty single peer_cig peer_alc unemp below_pov;
CATEGORIES 2 2 2 2 2 2;
SEED 452035948;
COVARIATES yr2_binge_gv;
REFERENCE 3;

RUN;

Step 3: Assign Individuals to Latent Classes

*This code is for non-inclusive approaches because it uses posterior;
*probabilities from the non-inclusive LCA;
*For inclusive approaches use the posterior probabilities from the;
*inclusive LCA instead;

DATA ni_assigned;
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SET lca_post_ni;

*First, maximum-probability assignment rule;
IF MAX(OF postlc1,postlc2,postlc3,postlc4,postlc5)=postlc1

THEN classify=1; ELSE
IF MAX(OF postlc1,postlc2,postlc3,postlc4,postlc5)=postlc2

THEN classify=2; ELSE
IF MAX(OF postlc1,postlc2,postlc3,postlc4,postlc5)=postlc3

THEN classify=3; ELSE
IF MAX(OF postlc1,postlc2,postlc3,postlc4,postlc5)=postlc4

THEN classify=4; ELSE
IF MAX(OF postlc1,postlc2,postlc3,postlc4,postlc5)=postlc5

THEN classify=5;

*Second, 20 pseudo-class draws;
ARRAY m20impute(20) m20imp1-m20imp20;
CALL STREAMINIT(841525);
DO i = 1 to 20;

m20impute[i]=RAND(’table’,postlc1,postlc2,postlc3,postlc4,postlc5);
END;

OUTPUT;
*Note that to use a different number of draws (e.g., 1 or 40), change;
*the dimension of the array and the ’do’ loop;

RUN;

Step 4: Analyze Using Class Assignment Treated as Known

*First, maximum-probability assignment rule;
PROC FREQ DATA = ni_assigned;

TABLES classify*yr2_binge;
RUN;

*Second, 20 pseudo-class draws;
%MACRO imputations(var,data);

PROC FREQ DATA = ni_assigned;
TABLES &var*yr2_binge;
ODS OUTPUT CROSSTABFREQS = &data;

RUN;

DATA freqsyes&data (KEEP = classnum rp&data code);
SET &data;

IF yr2_binge = 1 AND &var IN (1,2,3,4,5);
RENAME &var=classnum;
RENAME rowpercent=rp&data;
code=_n_;
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RUN;
%MEND;

%imputations(m20imp1,d1);
%imputations(m20imp2,d2);
%imputations(m20imp3,d3);
.
.
.
%imputations(m20imp18,d18);
%imputations(m20imp19,d19);
%imputations(m20imp20,d20);

DATA freqsyes;
MERGE

freqsyesd1 freqsyesd2 freqsyesd3 freqsyesd4 freqsyesd5
freqsyesd6 freqsyesd7 freqsyesd8 freqsyesd9 freqsyesd10
freqsyesd11 freqsyesd12 freqsyesd13 freqsyesd14 freqsyesd15
freqsyesd16 freqsyesd17 freqsyesd18 freqsyesd19 freqsyesd20;

BY classnum code;
averagerp = MEAN( rpd1, rpd2, rpd3, rpd4, rpd5, rpd6, rpd7, rpd8, rpd9,

rpd10,rpd11,rpd12,rpd13,rpd14,rpd15,rpd16,rpd17,rpd18,
rpd19,rpd20);

RUN;

PROC PRINT DATA=freqsyes;
VAR averagerp;
BY classnum;

*Note that to use a different number of draws (e.g., 1 or 40), change;
*the number of times macro is invoked, and expand the ’DATA freqsyes’;
*statements to include all ’freqsyesd’ datasets and ’rpd’ variables;

RUN;
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Table 2
Parameter Estimates for Five-Class LCA

Low Peer Econ H&P Multi-
Risk Risk Risk Risk Risk

Latent Class Membership Proportions .41 .22 .19 .13 .04
Overall

Indicator Proportion Item-Response Proportions
HH Below Poverty .37 .24 .00 .68 1.0 .47
HH Single-Parent .29 .15 .14 .49 .58 .52
Peer Cigarette Use .38 .00 .88 .15 .89 1.0
Peer Alcohol Use .42 .16 .77 .21 .77 1.0
NH Unemployment .23 .06 .06 .68 .19 1.0
NH Below Poverty .24 .01 .03 .81 .22 .97

Note: Econ=Economic; H&P=Household & Peer; HH=Household; NH=Neighborhood.
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Table 3
Parameter Estimates for the Relation Between Risk Exposure and Binge Drinking

Low Peer Econ H&P Multi-
Approach Risk Risk Risk Risk Risk

1 Maximum-Probability Non-inclusive .16 .39 .18 .38 .44
2 Maximum-Probability Inclusive .11 .42 .12 .60 .36
3 Pseudo-Class 01 Draw Non-inclusive .16 .35 .16 .44 .35
4 Pseudo-Class 20 Draws Non-inclusive .16 .37 .17 .39 .41
5 Pseudo-Class 40 Draws Non-inclusive .15 .37 .17 .39 .42
6 Pseudo-Class 01 Draw Inclusive .10 .41 .11 .67 .35
7 Pseudo-Class 20 Draws Inclusive .11 .41 .12 .62 .36
8 Pseudo-Class 40 Draws Inclusive .11 .41 .12 .61 .36

Overall Proportion = .25

Note: Econ=Economic; H&P=Household & Peer; Maximum-Probability=Assignment based
on maximum posterior probability; Non-Inclusive=Outcome was not included in LCA to gen-
erate posterior probabilities on which approach was based; Inclusive=Outcome was included
in LCA to generate posterior probabilities on which approach was based. Table entries rep-
resent the probabilities of past-year binge drinking conditional on latent class membership.



CLASSIFY-ANALYZE FOR LCA 37

Table 4
Patterns of γ and ρ Parameters for Simulation Measurement Quality Conditions

Low Peer Econ H&P Multi-
Indicator Risk Risk Risk Risk Risk

γ Parameters
.4 .2 .2 .1 .1

Real Life Measurement Quality ρ Parameters
HH Below Poverty .2 .1 .7 .9 .5
HH Single-Parent .2 .1 .5 .6 .5
Peer Cigarette Use .1 .9 .1 .9 .9
Peer Alcohol Use .2 .8 .2 .8 .9
NH Unemployment .1 .1 .7 .2 .9
NH Below Poverty .1 .1 .8 .2 .9

High Measurement Quality ρ Parameters
HH Below Poverty .1 .1 .9 .9 .9
HH Single-Parent .1 .1 .9 .9 .9
Peer Cigarette Use .1 .9 .1 .9 .9
Peer Alcohol Use .1 .9 .1 .9 .9
NH Unemployment .1 .1 .9 .1 .9
NH Below Poverty .1 .1 .9 .1 .9

Medium Measurement Quality ρ Parameters
HH Below Poverty .2 .2 .8 .7 .7
HH Single-Parent .2 .2 .8 .7 .7
Peer Cigarette Use .2 .8 .2 .7 .7
Peer Alcohol Use .2 .8 .2 .7 .7
NH Unemployment .2 .2 .8 .3 .7
NH Below Poverty .2 .2 .8 .3 .7

Low Measurement Quality ρ Parameters
HH Below Poverty .3 .3 .7 .7 .7
HH Single-Parent .3 .3 .7 .7 .7
Peer Cigarette Use .3 .7 .3 .7 .7
Peer Alcohol Use .3 .7 .3 .7 .7
NH Unemployment .3 .3 .7 .3 .7
NH Below Poverty .3 .3 .7 .3 .7

Note: Econ=Economic; H&P=Household & Peer; HH=Household; NH=Neighborhood. Ta-
ble entries for the ρ parameters represent the probabilities of exposure to the risk factor
conditional on latent class membership.
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Table 5
Patterns of Relation Between Latent Classes and Outcome for Simulation Effect Sizes

Low Peer Econ H&P Multi- Overall
Label Effect Size Risk Risk Risk Risk Risk Proportion
Real Life .42 .10 .40 .10 .60 .40 .24
Large Effect .50 .05 .30 .05 .67 .30 .19
Medium Effect .30 .12 .30 .12 .48 .30 .21
Small Effect .10 .23 .30 .23 .37 .30 .27
No Effect .00 .30 .30 .30 .30 .30 .30

Note: Econ=Economic; H&P=Household & Peer. Table entries represent the probabilities
of past-year binge drinking conditional on latent class membership.
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