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Abstract

Choosing a model with too few parameters can involve making unreal-
istically simple assumptions and lead to high bias, poor prediction, and
missed opportunities for insight. Such models are not flexible enough
to describe the sample or the population well. A model with too many
parameters can fit the observed data very well, but be too closely tai-
lored to it. Such models may generalize poorly. Penalized-likelihood
information criteria, such as Akaike’s Information Criterion (AIC), the
Bayesian Information Criterion (BIC), the Consistent AIC, and the
Adjusted BIC, are widely used for model selection. However, differ-
ent criteria sometimes support different models, leading to uncertainty
about which criterion is the most trustworthy. In some simple cases
the comparison of two models using information criteria can be viewed
as equivalent to a likelihood ratio test, with the different models repre-
senting different alpha levels (i.e., different emphases on sensitivity or
specificity; Lin & Dayton 1997). This perspective may lead to insights
about how to interpret the criteria in less simple situations. For ex-
ample, AIC or BIC could be preferable, depending on sample size and
on the relative importance one assigns to sensitivity versus specificity.
Understanding the differences among the criteria may make it easier to
compare their results and to use them to make informed decisions.
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Many model selection techniques have been proposed in different settings (see, e.g., Miller,

2002; Pitt & Myung, 2002; Zucchini, 2000). Among other considerations, researchers must

balance sensitivity (having enough parameters to adequately model the relationships among

variables in the population) with specificity (not overfitting a model or suggesting nonexistent

relationships). Several of the simplest and most common model selection criteria can be

discussed in a unified way as log-likelihood functions with simple penalties. These include

Akaike’s Information Criterion (AIC; Akaike, 1973), the Bayesian Information Criterion

(BIC; Schwarz, 1978), Bozdogan’s consistent AIC (CAIC; Bozdogan, 1987), and the adjusted

BIC (see Sclove, 1987). They consist of a goodness-of-fit term plus a penalty to control

overfitting, and provide a standardized way to balance sensitivity and specificity.

Each of these simple criteria involves choosing the model with the best penalized log-

likelihood (i.e., the highest value of `−Anp where ` is the log-likelihood, An is some constant

or some function of the sample size n, and p is the number of parameters in the model). For

historical reasons, instead of finding the highest value of ` minus a penalty, this is sometimes

expressed as finding the lowest value of −2` plus a penalty, i.e.,

−2`+ Anp. (1)

Expression (1) is what Atkinson (1980) called the generalized information criterion. In this

paper we refer to (1) as an information criterion (IC). Expression (1) is sometimes replaced

in practice (e.g. Collins & Lanza, 2010) by the practically equivalent G2 +Anp, where G2 is

the deviance, that is, −2` plus a function of the saturated model.

Expression (1) cannot be used directly in practice without first choosing An. Specific

choices of An make (1) equivalent to AIC, BIC, adjusted BIC or CAIC. Thus, although

motivated by different theories and goals, algebraically these criteria are only different values

of An in (1), thus corresponding to different relative degrees of emphasis on parsimony

(Claeskens & Hjort, 2008; Lin & Dayton, 1997). Because the different ICs often do not

agree, the question often arises as to which is best to use in practice. In this paper we review

this question by focusing on the similarities and differences among AIC, BIC, CAIC, and

adjusted BIC, especially in view of an analogy between their different complexity penalty

weights An and the α levels of hypothesis tests. In the following section we review AIC,

BIC, CAIC, adjusted BIC, and related criteria. We then compare them in three simulated

case studies involving latent class analysis (LCA), exploratory factor analysis, and multiple

linear regression. Our goal is not to provide a comprehensive survey of model selection,

but to demonstrate ways in which some intuitive and useful principles arise repeatedly in

different contexts.
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Table 1: Summary of Information Criteria

Criterion Penalty Weight Emphasis Consistent? Likely Kind
of Error

AIC An = 2 Good future prediction No Overfitting

Adjusted BIC An = ln
(

n+2
24

)
Depends on n Yes Depends on n

BIC An = ln (n) Parsimonious model Yes Underfitting

CAIC An = ln (n+ 1) Parsimonious model Yes Underfitting

Notes. Two variants of AIC are also mentioned in the text. The AIC3 is similar to AIC
but uses An = 3 instead. The AICc in a regression equals AIC+2(m+ 1)(m+ 2)/(n−m−2)
where m is the number of included regression coefficients, including the intercept.

Common Penalized-Likelihood Information Criteria

Akaike’s Information Criterion (AIC)

In this section we review some commonly used ICs. For convenience these ICs are sum-

marized in Table 1. First, the AIC of Akaike (1973) sets An = 2 in (1). It estimates the

relative Kullback-Leibler (KL) distance (a nonparametric distance measure) of the likelihood

function specified by a fitted candidate model, from the unknown true likelihood function

that generated the data. The fitted model closest to the truth in the KL sense would not

necessarily be the model which best fits the observed sample, since the observed sample can

often be fit arbitrary well by making the model more and more complex. Rather, the best KL

model is the model that most accurately describes the population distribution and hence fu-

ture samples from it. More specifically, the KL distance can be written as Et(`t(y))−Et(`(y))

where Et is the expected value under the unknown true distribution function, ` is the log-

likelihood of the data under the fitted model being considered, and `t is the log-likelihood

of the data under the unknown true distribution. Et(`t(y)) will be the same for all models

being considered, so KL is minimized by choosing the model with highest Et(`(y)). The

`(y) from the fitted model is a biased measure of Et(`(y)) because the same data are being

used to estimate the model and to try to predict its fit to future data. However, Akaike

(1973) showed that an approximately unbiased estimate of Et(`(y)) would be a constant

plus `− tr(Ĵ−1K̂) (where J and K are two p× p matrices, described below, and tr() is the

trace, or sum of diagonals). Ĵ is an estimator for the covariance matrix of the parameters

based on the second-derivatives matrix of ` in the parameters and K̂ is an estimator based

on the cross-products of the first derivatives (see Claeskens & Hjort, 2008, pp. 26-7). Akaike
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showed that Ĵ and K̂ are asymptotically equal for the true model, so that the trace becomes

approximately p, the number of parameters in the model. For models that are far from the

truth, the approximation may not be as good. However, they presumably have poor values

of `, so the precise size of the penalty is unimportant (Burnham & Anderson, 2002). The

resulting expression ` − p suggests using An = 2 in (1) and concluding that fitted models

with low values of (1) will be likely to provide a likelihood function closer to the truth. AIC

is discussed further by Burnham and Anderson (2002, 2004) and Kuha (2004).

Criteria Related to AIC. It may be that the crucial AIC approximation tr(Ĵ−1K̂) ≈ p

is too optimistic and the resulting penalty for model complexity is too weak (Tibshirani &

Knight, 1999; Hastie, Tibshirani, & Friedman, 2001). In the context of regression and time

series models, several researchers (e.g., Sugiura, 1978; Hurvich & Tsai, 1989; Burnham &

Anderson, 2004) have suggested using a corrected version, AICc, which applies a slightly

heavier penalty that depends on p and n; it gives results very close to those of AIC unless

n is not large relative to p. For small n, Hurvich and Tsai (1989) showed that AICc some-

times performs better than AIC. Also, in the context of mixture models such as LCA, some

researchers (Andrews & Currim, 2003; Fonseca & Cardoso, 2007; Yang & Yang, 2007) have

suggested An = 3 in (1) instead of 2. The latter is sometimes called “AIC3.” There is little

theoretical basis for AIC3, despite fairly good simulation performance.

The Deviance Information Criterion is beyond the scope of this paper and more sophis-

ticated and computationally intensive than (1). However, it has some relationship to AIC

(Claeskens & Hjort, 2008).

Also, some selection criteria are in fact asymptotically equivalent to AIC, at least for

linear regression. These include Mallows’ Cp, and leave-one-out cross-validation (Shao, 1997;

Stone, 1977). The latter involves fitting the candidate model on many subsamples of the

data, each excluding one subject, and observing the average squared error in predicting

the extra response. Each approach is intended to correct a fit estimate for the artifactual

inflation in observed performance caused by fitting a model and evaluating it with the same

data. Model parsimony is not a motivating goal in its own right, but is a means to reduce

unnecessary sampling error caused by having to estimate too many parameters relative to

n. Thus, especially for large n, sensitivity is likely to be treated as more important than

specificity. If parsimonious interpretation is of interest in its own right, another criterion

such as BIC, described in the next section, might be more appropriate.

Schwarz’s Bayesian Information Criterion (BIC)

In Bayesian model selection, a prior probability is set for each model Mi, and prior dis-

tributions are also set for the nonzero coefficients in each model. If we assume that one

and only one model, along with its associated priors, is true, we can use Bayes’ Theorem
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to find the posterior probability of each model given the data. Let Pr(Mi) be the prior

probability set by the researcher, and Pr(y|Mi) be the probability density of the data under

Mi, calculated as the expected value of the likelihood function of y given the model and

parameters, over the prior distribution of the parameters. According to Bayes’ theorem, the

posterior probability Pr(Mi|y) of a model is proportional to Pr(Mi) Pr(y|Mi). The degree

to which the data support Mi over another model Mj is given by the ratio of the posterior

odds to the prior odds: (Pr(Mi|y) / Pr(Mj|y)) / (Pr(Mi)/Pr(Mj)). If we assume equal

prior probabilities for each model then this simplifies to the “Bayes factor” (see Kass &

Raftery, 1995): Bij = Pr(Mi|y)/Pr(Mj|y) = Pr(y|Mi)/Pr(y|Mj), so that the model with

the higher Bayes factor also has the higher posterior probability. Schwarz (1978) and Kass

and Wasserman (1995) showed that in many kinds of models Bij can be roughly approxi-

mated by exp(−1
2
BICi + 1

2
BICj), where BIC (sometimes called SIC) is (1) with An = ln(n),

especially if a certain “unit information” prior is used for the coefficients. Thus the model

with the highest posterior probability is likely the one with lowest BIC. BIC is described

further in Raftery (1995), Wasserman (2000), and Weakliem (1999).

BIC is sometimes preferred over AIC because BIC is “consistent.” Assuming that a fixed

number of models are available and that one of them is the true model, a consistent selector

is one which will select the true model with probability approaching 100% as n→∞. In this

context, the true model is the smallest adequate model (i.e., the single model that minimizes

KL distance, or the smallest such model if there is more than one; Claeskens & Hjort, 2008).

AIC is not consistent because it has a non-vanishing chance of choosing an unnecessarily

complex model as n becomes large.

Researchers have proposed benchmarks for judging whether the size of a difference in AIC

or BIC between models is practically significant (see Burnham & Anderson, 2004; Raftery,

1995). For example, an AIC difference between two models of less than 2 provides little

evidence for one over the other; an AIC difference of 10 or more is strong evidence.

Criteria Related to BIC. Sclove (1987) suggested an adjusted BIC, abbreviated as

ABIC or BIC∗, based on the work of Rissanen (1978) and Boekee and Buss (1981). It uses

An = ln((n + 2)/24) instead of An = ln(n). This penalty will be much lighter than that

of BIC, and may be lighter or heavier than that of AIC, depending on n. The unusual

expression for An comes from Rissanen’s work on model selection for autoregressive time

series models from a minimum description length perspective (see Stine, 2004, for a review).

It is not immediately clear whether or not the same adjustment is still appropriate in different

contexts. Also similar to BIC (despite its name) is the CAIC, the “corrected” or “consistent”

AIC proposed by Bozdogan (1987), which uses An = ln(n) + 1. (It should not be confused

with the AICc discussed earlier.) This penalty tends to result in a more parsimonious model,
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and more underfitting, than BIC with An = ln(n). This An was chosen somewhat arbitrarily

and described as one example of an An that would provide model selection consistency.

However, any An proportional to ln(n) provides model selection consistency, so CAIC has

no clear advantage over the better-known BIC.

Information Criteria in Simple Cases

The fact that the criteria described here all have the form of (1), except for different An,

leads to two insights into how they will behave in various situations. First, when comparing

several different models of the same size (e.g., different five-predictor subsets in regression

subset selection) all criteria of the form (1) will always agree on which model is best. Each

will select whichever model has the best fitted likelihood (the best fit to the observed sample,

e.g., best R2, lowest error estimate, lowest deviance). This is because only the first term in

(1) will differ across the candidate models, so An does not matter.

Second, for a nested pair of models, different ICs act like different α levels on a likelihood

ratio test. For comparing models of different sizes, when one model is a restricted case of

the other, the larger model will typically offer better fit to the observed data at the cost of

needing to estimate more parameters. The criteria will differ only in how they make this

tradeoff (Lin & Dayton, 1997; Sclove, 1987). Thus, an IC will act like a hypothesis test

with a particular α level (Söderström, 1977; Teräsvirta & Mellin, 1986; Claeskens & Hjort,

2008; Foster & George, 1994; Stoica, Selén, & Li, 2004; Leeb & Pötscher, 2009; van der

Hoeven, 2005). Suppose a researcher will choose whichever of M0 and M1 has the better

(lower) value of an IC of the form (1). This means that M1 will be chosen if and only if

−2`1 + Anp1 < −2`0 + Anp0, where `1 and `0 are the fitted maximized log-likelihoods for

each model. Although it is interpreted differently, algebraically this comparison is the same

as a likelihood ratio (LR) test (Leeb & Pötscher, 2009, p. 900; Pötscher 1991; Söderström,

1997; Stoica, Selén, and Li, 2004) rejecting M0 if and only if

−2(`0 − `1) > An(p1 − p0). (2)

The left-hand side is the classic LR test statistic (since a logarithm of a ratio of quantities

is the difference in the logarithms of the quantities). Thus, in the case of nested models an

IC comparison is mathematically a null hypothesis test with a different interpretation. The

α level is specified indirectly through the critical value An; it is whatever proportion of the

null hypothesis distribution of the LR test statistic is less than An.

For many kinds of models, the asymptotic H0 distribution of −2(`0−`1) is asymptotically

χ2 with degrees of freedom (df) equal to p1 − p0. Consulting a χ2 table and assuming

p1 − p0 = 1, AIC (An = 2) becomes equivalent to a LR χ2 test at an α level of about .16
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(i.e., the probability of a χ2
1 deviate being greater than 2). In the same situation, BIC (with

An = ln(n)) has an α level that depends on n. If n = 10 then An = ln(n) = 2.30 so α = .13.

If n = 100 then An = 4.60 so α = .032. If n = 1000 then An = 6.91 so α = .0086, and

so on. With moderate or large n, significance testing at the customary level of α = .05

is an intermediate choice between AIC and BIC, because the square of a standard normal

variate is a χ2 variate with one degree of freedom, so that the two-sided critical z of 1.96 is

equivalent to a critical χ2 of An = 1.962 ≈ 4.

For AIC, the power of the test increases with n, so that rejecting any given false null

hypothesis is essentially guaranteed for sufficiently large n even if the effect size is tiny;

however, the Type I error rate is constant and never approaches zero. On the other hand,

BIC becomes a more stringent test (has a lower Type I error rate) as n increases. Thus,

nonzero but tiny effects are less likely to lead to rejecting the null hypothesis for BIC than

for AIC (see Raftery, 1995). Fortunately, even for BIC, the decrease in α as n increases is

slow; thus power still increases as n increases, although more slowly than it would for AIC.

Thus, for BIC, both the Type I and Type II error rates decline slowly as n increases, while

for AIC (and for classical significance testing) the Type II error rate declines more quickly

but the Type I error rate does not decline at all. This is intuitively why a criterion with

constant An cannot be asymptotically consistent even though it may be more powerful for

a given n (see Claeskens & Hjort, 2008; Kieseppä, 2003; Yang, 2005).

Nylund, Asparouhov, & Muthén (2007) seem to interpret the lack of consistent selection

as a flaw in AIC (Nylund et al., 2007, p. 556). An alternative view is that AIC attempts to

find the model with good performance in some predictive sense. If n is small, then we may

have to choose a smaller model to get more reliable coefficient estimates. However, if n is

large, then standard errors will be small and one can afford to use a rich model. Thus, from

an AIC perspective and for large n, Type II error (an underfit model) is considered worse

than a Type I error (overfit model). In contrast, with BIC we are willing to take a higher

risk of choosing too small a model, to improve our probability of choosing the true (smallest

correct) model. BIC considers Type I and Type II errors to be about equally undesirable

(Schwarz, 1978), while AIC considers Type II errors to be more undesirable than Type I

errors unless n is very small. Neither perspective is always right or wrong. AIC is not a

defective BIC, nor vice versa (see Kieseppä, 2003; Shibata, 1981, 1986).

In classical hypothesis testing, overfitting (Type I errors) are considered worse than Type

II errors, because the former is considered an incorrect statement while the latter is simply

a “failure to reject.” However, for prediction, a Type II error can be quite harmful. One

might almost say that for traditional hypothesis testing, a model is wrong when it is too

large, while for estimation it is wrong when it is too small. Sometimes the relative importance
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of sensitivity or specificity depends on the decisions to be made based on model predictions.

For example, in some environmental or epidemiological contexts, Type II error might be

much more harmful to public health. Another way to characterize the comparison of two

nested models is by analogy to a medical diagnostic test (see, e.g., Altman & Bland, 1994),

replacing “Type I error” with “false positive” and “Type II error” with “false negative.”

AIC and BIC use the same data, but apply different cutoffs for whether to “diagnose” the

smaller model as being inadequate. AIC is more sensitive (lower false negative rate) but

BIC is more specific (lower false positive rate). The utility of each cutoff is determined by

the consequences of a false positive or false negative, and by one’s beliefs about the base

rates of positives and negatives. Thus, AIC and BIC represent different sets of prior beliefs

in a Bayesian sense (see Burnham & Anderson, 2004; Kadane & Lazar, 2004) or, at least,

different judgments about the importance of parsimony.

Consider a simple classic scenario: a comparison of the means of two independent samples

of equal size, assumed to have equal variance. One sample might be the control group and

the other the experimental group in a randomized clinical trial. (See also Claeskens and

Hjort, 2008, pp. 102-106, who work though an even simpler example in greater detail.) In

our example two models are being compared:

M0 : yij = β0 + eij

M1 : yij = β0 + β1xi + eij

(3)

where the eij are independent normal errors with error variance σ2, and xi is dummy-coded

0 for the control group and 1 for the experimental group, so that β1 is the effect of being in

the experimental group. M0 is nested within M1 and has one fewer parameter, since M0 sets

β1 = 0 in the expression for M1. In a null hypothesis test such as a two-group independent-

samples t-test, the smaller model M0 becomes the null hypothesis H0 and the larger model

M1 becomes the alternative hypothesis H1. However, suppose an investigator decided to

choose between these models using an IC. From the discussion in the previous subsection,

the “test” based on an IC would be equivalent to a LR χ2 test, with some α determined

implicitly by An in (1). Here the implied LR χ2 test would be approximately equivalent to

a z-test (i.e., a näıve t-test treating the standard deviation as known; recall that a pooled

variance t-statistic is asymptotically equivalent to a z-statistic, and the square of a z random

variate is a χ2.) Thus, using AIC in this case would be much like a t-test or z-test, although

with an α of about Pr(χ2
1 > 2) ≈ .16 instead of the customary .05. Thus, if H0 in (3) were

true, AIC would erroneously favor H1 about 16% of the time. In contrast, the α levels of the

BIC-like criteria would be much smaller and would decrease as n increases. BIC and CAIC

are more parsimonious than AIC at any reasonable n, that is, they have lower α and thus
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necessarily lower power. ABIC has an α which changes with n as BIC does, but is much

less parsimonious (higher α) than original BIC at any n. Importantly, this simple example

shows why no IC can be called best in an unqualified sense. Since choosing An in this simple

situation is equivalent to choosing an α level for a significance test, the universally “best”

IC cannot be defined any more than the “best” α.

For nested models differing by more than one parameter, one can still express an IC as

an LR test using (2). The only difference is that the χ2 distribution for finding the effective

asymptotic α level now has df higher than 1. Thus for example, AIC might be less liberal

when comparing a (p + 5)-parameter model to a p-parameter model than it would be in

comparing a (p + 1)-parameter model to a p-parameter model, since Pr(χ2
5 > 2× 5) ≈ .075

while Pr(χ2
1 > 2× 1) ≈ .16. Similarly, the α level for BIC also depends on the difference in

number of parameters, but with moderate or high n it will still be lower than that of AIC.

It is often difficult to determine the α value that a particular criterion really represents in

a particular situation, for two reasons. First, even for regular situations in which a LR test

is known to work well, the χ2 distribution for the test statistic is asymptotic and will not

apply well to small n. Second, in some situations the rationale for using an IC is, ironically,

the failure of the assumptions needed for a LR test. That is, the test emulated by the IC

will itself not be valid at its nominal α level anyway. Therefore, although the comparison of

An to an α level is helpful for getting a sense of the similarities and differences among the

ICs, simulations are required to describe exactly how they behave.

Latent Class Analysis Case Study

A very common use of ICs by social and behavioral scientists is in selecting the number of

components for a finite mixture model. Many kinds of models, such as latent class analysis

(LCA; see Lazarsfeld & Henry, 1968; Collins & Lanza, 2010), suppose that the population is

composed of multiple classes of a categorical latent variable. Before the parameters for these

classes can be estimated, it is first necessary to determine the number of classes. Sometimes

one might have a strong theoretical reason to specify the number of classes, but often this

must be done using the data. In this section we consider LCA with categorical indicator

variables as in Collins and Lanza (2010), although conceptually the problem is similar for

some other finite mixture models.

A näıve approach would be to use LR or deviance (G2) tests sequentially to choose the

number of classes, and conclude that the k-class model is large enough if and only if the

(k+ 1)-class model does not fit significantly better. The selected number of classes would be

the smallest k that is not rejected. However, the assumptions for the supposed asymptotic

χ2 distribution in a LR test are not met in the setting of LCA, so that the p-values from
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those tests are not valid (see Lin & Dayton, 1997; MacLachlan & Peel, 2000). H0 here is

not nested in a regular way within H1, since a k-class model is obtained from a (k + 1)-

class model either by constraining any one of the class sizes to a boundary value of zero

or by setting the class-specific item-response probabilities equal between any two classes.

Ironically, the lack of regular nesting structure that makes it impossible to decide on the

number of classes with an LR test also invalidates approximations used in the AIC and BIC

derivations (McLachlan & Peel 2000, pp. 202-212). From (2), comparing any two values

of k using ICs is algebraically the same as using a näıve likelihood ratio test with some α

level. Nonetheless, ICs are widely used in LCA and other mixture models. Asymptotically,

when the true model is well-identified, BIC (and hence also AIC and ABIC) will at least

not underestimate the true number of components (Leroux 1992; McLachlan & Peel 2000,

p. 209).

Lin and Dayton (1997) compared the performance of AIC, BIC, and CAIC for LCA

models in simulations. Instead of exploring the number of classes, they were comparing k-

class models which differed in complexity (the number of parameters needed to describe the

model from which the data was generated) due to different sets of simplifying assumptions.

When a very simple model was used as the true model, BIC and CAIC were more likely to

choose the true model than AIC, which tended to choose an unnecessarily complicated one.

When a more complex model was used to generate the data and measurement quality was

poor, AIC was more likely to choose the true model than BIC or CAIC, which were likely

to choose an overly simplistic one. They explained that this was very intuitive given the

differing degrees of emphasis on parsimony.

Other simulations have explored the ability of the ICs to determine the correct number of

classes. In Dias (2006), AIC had the lowest rate of underfitting but often overfit, while BIC

and CAIC practically never overfit but often underfit. AIC3 was in between and did well in

general. The danger of underfitting increased when the classes did not have very different

response profiles; in these cases BIC and CAIC almost always underfit. Yang (2006) reported

that ABIC performed better in general than AIC (whose model selection accuracy never got

to 100% regardless of n) or BIC or CAIC (which underfit too often and required large n to

be accurate). Yang and Yang (2007) compared AIC, BIC, AIC3, ABIC and CAIC. When

the true number of classes was large and n was small, CAIC and BIC seriously underfit,

but AIC3 and ABIC performed better. Nylund et al. (2007) presented various simulations

on the performance of various ICs and tests for selecting the number of classes in LCA, as

well as factor mixture models and growth mixture models. Overall, in their simulations,

BIC performed much better than AIC (which tended to overfit) or CAIC (which tended to

underfit) (Nylund et al., 2007, p. 559). However, this does not mean that BIC was the
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best in every situation. In most of the scenarios, BIC and CAIC almost always selected the

correct model size, while AIC had a much smaller accuracy in these scenarios because of

a tendency to overfit. In those scenarios, n was large enough so that the lower sensitivity

of BIC was not a problem. However, in a more challenging scenario (8-item, unequally

sized classes, n = 200 on p. 557) BIC essentially never chose the larger correct model and

it usually chose one which was much too small. Thus, as Lin and Dayton (1997) found,

BIC may select too few classes when the true population structure is complex but subtle

(somewhat like a small but nonzero effect in our z-test example) and n is small. Wu (2009)

compared the performance of AIC, BIC, ABIC, CAIC, näıve tests, and the bootstrap LR

test in hundreds of different simulated scenarios. Performance was heavily dependent on the

scenario, but the method that worked adequately in the greatest variety of situations was

the bootstrap LR test, followed by ABIC and classic BIC. Wu (2009) speculated that BIC

seemed to outperform ABIC in the most optimal situations because of its parsimony, but

that ABIC seemed to do better in situations with smaller n or more unequal class sizes. It

is not possible to say which IC is universally best, even in the idealized world of simulations.

Rather, the true parameter values and n used when generating simulated data determine

the relative performance of the ICs. Even within a given scenario, the relative performance

of criteria depends on which aspect of performance is being discussed. Below we illustrate

these ideas with simulated examples.

In a real-data analysis described in Collins and Lanza (2010, p. 12), adolescents (n =

2087) were asked whether or not, in the past year, they had participated in each of six kinds of

behavior considered delinquent. On this basis, they used LCA to postulate four classes: non-

delinquent (49% of adolescents), verbal antagonists (26% of adolescents), shoplifters (18%),

and general delinquents (6%). We used this as the starting point for a simulation study to

show how the behavior of ICs differs by penalty weight, sample size, and true model values.

For each value of n in 100, 200, 400, 600, . . . , 1800, we generated 1000 random datasets each

with sample size n, using the estimates from Collins and Lanza (2010) as the true population

values. Latent class models specifying 1, 2, 3, 4, 5, or 6 classes were fit to these datasets, and

the class sizes selected by AIC, BIC, AIC3, ABIC, and CAIC were recorded. In addition to

the 4-class model described in Collins and Lanza (2010), an alternative 3-class scenario was

also used to conduct another set of simulations. For this, we blended the last two classes

into one class, with response probabilities determined by a weighted average. The smallest

class has prevalence 24.5% in the three-class model, compared to about 6% in the four-class

model.

The ICs were compared on four performance measures: proportion overfitting (choosing

more than the correct number of classes), proportion underfitting (choosing less than the
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correct number of classes), proportion correct fitting (choosing the correct number of classes),

and estimation error, measured as the square root of the mean (over replications and cells)

of the squared estimation error for the cell probabilities of the underlying contingency table.

To explain this fourth performance measure, recall that an LCA model can be seen as an

approach to modeling a contingency table, in this case the 2×2×2×2×2×2 table of relative

frequencies of each possible combination of responses to the six delinquency questions. Thus,

we defined mean squared model error in this example as SSE =
∑

j(P̂j−Pj)
2 over all 26 = 64

cells j in the contingency table, where P̂ is the estimated probability of the cell and P is

the true probability. We used this as a basis for a root-mean-squared error measure of LCA

performance in estimating the contingency table: specifically, the average across replications

of
√
SSE/26 for a given method at a given n. The result can be roughly interpreted as

an average empirical standard error measure for the individual cell probabilities Pj. The

data were generated in SAS and analyzed using PROC LCA (Lanza, Collins, Lemmon &

Schafer, 2007; Lanza, Dziak, Huang, Xu, & Collins, 2011). The simulation results are shown

as graphs with linear interpolation in Figures 1 and 2.

The results in the three-class scenario were mostly as expected. Underfitting rates were

very high for small n but they quickly declined. BIC and CAIC had the highest underfitting

rates. Overfitting rates were low, except for AIC and for ABIC with small n. In terms of

mean squared error (MSE), all of the criteria chose models that estimated the contingency

table well when n was large, but the more sensitive criteria (AIC, ABIC, AIC3) did better

than the more specific criteria (BIC, CAIC) for smaller n. If the true model is selected, the

estimates do not depend on which criterion was used to select the model. However, the more

parsimonious criteria had poorer estimation quality on average because they underfit more

often. The
√
MSE values in Figure 2 appear very small, but recall that the cell proportions

being estimated are themselves small (averaging 1/64).

In the four-class scenario, the true model was much harder for the criteria to detect,

largely because one of the classes was so small (see Wu, 2009). Underfitting rates were

much slower to decline in n; it was much harder to detect all four classes here than to

detect all three classes earlier. Overfitting rates were very small except for AIC. Because

of substantial underfitting, BIC and CAIC now had a much poorer accuracy for choosing

the correct number of classes than did AIC, ABIC, or AIC3. For n = 1400, BIC and CAIC

still underfit more than 50% of the time although AIC, ABIC or AIC3 usually selected the

correct model. All criteria did a good job of estimating the underlying contingency table

when n was large enough, although BIC and CAIC required a larger n.

The very limited simulation studies described here cannot provide general rules for all

situations, but they provide useful heuristics. If the goal of having a sufficiently rich model
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Figure 1. Underfitting and overfitting rates of information criteria for LCA example. “DGM”
denotes data-generating model (simulated true model).
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Figure 2. Correct model selection rates and root mean squared estimation error of information
criteria for LCA example. “DGM” denotes data-generating model (simulated true model).
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to describe the heterogeneity in the population is more important than parsimony, or if

some classes are expected to be small or similar to other classes but distinguishing among

them is still considered important for theoretical reasons, then perhaps AIC, AIC3 or ABIC

should be used instead of BIC or CAIC. If obtaining a few large and distinct classes is more

important, then BIC is more appropriate. Sometimes, the AIC-favored model might be so

large as to be difficult to use or understand, so the BIC-favored model is a better choice

(e.g., in Chan, Leu, and Chen, 2007, BIC favored a mixture model with 5 classes and AIC

favored at least 10; the authors chose the BIC-favored model by other considerations).

Another possibility is to use a bootstrap LR test. Unlike the näıve LR test, Nylund et

al. (2007) showed empirically that the bootstrap LR test with a given α level does generally

provide a Type I error rate at or below that specified level. Like any test or criterion, it still

requires the choice of a tradeoff between sensitivity and specificity (i.e., an α level). However,

it is good to be able to choose and know the α level being used in a straightforward way.

Both Nylund et al. (2007) and Wu (2009) found that this bootstrap test seemed to perform

somewhat better than the ICs in various situations. Mplus can perform such a test (Muthén

& Muthén, 2007). A bootstrap LR test is also available as a SAS macro in conjunction with

PROC LCA; both are available at methodology.psu.edu. The bootstrap LR test is beyond

the scope of this paper, as are more computationally intensive versions of AIC and BIC,

involving bootstrapping, cross-validation or posterior simulation (see McLachlan & Peel,

2000, pp. 204-212).

Factor Analysis Case Study

Another situation in which the behavior of ICs may be compared is in choosing the

number of factors in an exploratory factor analysis. Akaike (1987) and Song and Belin

(2007) further describe the use of AIC and BIC in factor analysis, and explore how to handle

missing data in this context. It is beyond the scope of this paper to recommend for or against

the use of ICs, as opposed to other methods such as the likelihood ratio χ2 difference test

(see Akaike, 1987; Hayashi, Bentler, & Yuan, 2007) or retaining as many factors as there

are eigenvalues greater than one (see Kaiser, 1960). However, exploratory factor analysis

provides another straightforward setting for a simulated case study in which we can compare

the behavior of the ICs.

Harman’s classic “24 psychological tests” dataset (Harman, 1976) is a correlation matrix

of psychometric test scores, which is available in the datasets library in R (R Development

Core Team, 2010). We used it to create two scenarios, one with a 3-factor structure and

the other with a 4-factor structure. For each scenario, we did an exploratory factor analysis

on the original correlation matrix, specifying the desired number of factors, then used the
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correlation matrix implied by the estimates from this analysis as though it were a true

population model, from which we generated random samples. For each n value in 50, 60, 70,

. . ., 600 we simulated 1000 datasets of size n under both the 3-factor and 4-factor models.

To each dataset we fit 1-, 2-, 3-, 4-, and 5-factor models and calculated the AIC, BIC, AIC3,

ABIC and CAIC.

We calculated overfitting and underfitting rates for each criterion, as well as the square

root of the mean (across replications and parameters) squared error (MSE) of estimation

for estimating the parameters of the true 3- or 4-factor population covariance matrix. The

overfitting rate was defined as the proportion of simulations in which an IC selected more

factors than were the data-generating model. Underfitting rate, similarly, was the proportion

of simulations in which an IC indicated fewer. The final performance measure,
√

MSE, tells

how well the selected model describes the population. Simulations and graphs were done

in R. The results are shown in Figure 3 and 4. Underfitting rates are initially very high

for most of the criteria, but they quickly decline as n (thus statistical power) increases.

For small n, BIC and CAIC were more likely to underfit than AIC, with ABIC and AIC3

intermediate. For n over 300 or 400, none of the methods underfit very often. Overfitting

rates were practically zero for all of the methods except AIC, which had an overfitting rate

around 15% regardless of n. ABIC and AIC3 performed quite well in terms of overall model

selection accuracy. For all methods, estimation error declined as n increased, although for

small n it was lower (better) for AIC and ABIC than for BIC or CAIC. For n > 300, each

IC performed about equally well.

In both the LCA and factor analysis examples, the MSE for moderate n was sometimes

better for AIC than for BIC. This is because the cost to MSE of fitting too large a model

is often less than that of fitting too small a model, as shown in Figure 5. In this figure,

as long as the candidate model is at least as rich as the data-generating model (i.e., has at

least as many classes or factors as the true data-generating model), estimation performance

is good. The best performance (lowest MSE) is obtained from the exactly correct model

size, but models that are slightly too rich might have performance that is almost as good.

Overly simple models sometimes have much poorer performance because they represent an

excessive constraint on the implied covariance estimate of the variables. As an extreme

example, suppose an LCA investigator wrongly assumes that there is only one class, when in

reality the sample comes from a multiple-class population. Under the one-class model, the

standard LCA assumption that responses are independent conditional on the latent variable

(see Collins & Lanza, 2010) becomes an assumption that all responses are unconditionally

independent. It would be impossible for this model to give good predictions about how the

variables are related in the population. For the opposite extreme, suppose the investigator
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Figure 3. Underfitting and overfitting rates of information criteria for factor analysis example.
“DGM” denotes data-generating model (simulated true model).
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Figure 4. Correct model selection rates and root mean squared estimation error of information
criteria for factor analysis example. “DGM” denotes data-generating model (simulated true model).
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assumes that there are very many classes, one for each observed response profile. The model

would be useless in practice because it is as complex as the original dataset. However,

the implied estimates of the population contingency table and of the correlation matrix of

the indicator variables would be unbiased, since they would be based on a direct empirical

estimate of the relative frequency of each possible response profile. That is, the population

might still be described fairly accurately, although uninterpretably and with high sampling

error.

Multiple Regression Case Study

The previous examples involved situations in which a small sequence of models of increas-

ing complexity were considered to model the covariance of a given set of variables. Thus, the

candidate models could be treated as nested in at least an informal or conceptual way, even

if the regularity conditions for a test of nested hypotheses might not be met. Thus, compar-

ing the ICs in terms of sensitivity and specificity, as if they were tests, was straightforward.

The question arises of how well this generalizes to situations with a much larger range of

candidate models which are not all arranged in order, as in subset selection for regression

(reviewed by Hocking, 1976; George, 2000; Miller, 2002).

One way to study subset selection is to consider a simple special case. If all of the

predictors in a normal linear regression model are mutually uncorrelated (orthogonal) and

responses have constant variance σ2, then the contribution of each predictor to the fit can be

considered independently. Thus subset selection with ICs becomes equivalent to significance

tests on each predictor variable, and the different ICs become different alpha levels. That is,

predictor j will be included if and only if it is significant using an F test with critical value

An, or t test with critical value
√
An, from (1) (Foster & George, 1994, p. 1947). Then the

different An can be interpreted as determining the α levels for a test, or the thresholds for

how large a β estimate has to be to include it in the model.

In real research, the predictors are usually far from independent. Thus, model selection

is not equivalent to a test of each coefficient separately. Since the variance proportions

in the response variable accounted for by different variables now overlap, the importance

of a given variable depends on what other variable is in the model. Specifically, how the

importance of a predictor variable is determined depends on the selection method being

used, for example, whether (1) marginal significance testing on the full model, (2) a forward,

backward or combined stepwise approach, or (3) an all-subsets approach is used. Trimming

the model using significance tests on each variable separately (see Freedman & Pee, 1989),

although perhaps common, ignores the ways in which the importance of one variable may

depend on which others are considered. In contrast, a stepwise approach does consider which
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Figure 5. Estimation performance by models of various fixed sizes in the LCA and factor analysis
examples. “DGM” denotes data-generating model (simulated true model).
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other variables are included when evaluating a new variable. Since it considers nested pairs

of variables at a time, stepwise selection by ICs is much like stepwise testing by t or F

tests. A disadvantage of stepwise approaches is that they only evaluate a small fraction of

the possible number of subsets available, those on or adjacent to the stepwise path used.

Last, an all-subsets approach tries every model in the space, but since there are so many

(2p if there are p predictors available), the selection of the best may be strongly influenced

by chance sampling variance. Thus, it is harder to describe how prediction methods will

behave, except asymptotically as n→∞.
The asymptotic properties of the ICs for variable selection are elegantly reviewed by Shao

(1997) and Yang (2005). Unfortunately, the relative superiority of AIC or BIC depends on the

specific assumptions being made in the asymptotic scenario, in ways that can be challenging

to interpret for real data when n is finite and the form of the true model unknown. If a

small group of models are being compared and one is exactly true, then BIC will find that

model with high probability for sufficiently high n. However, if a range of model sizes are

being compared but no finite size provides an exactly correct parametric model, AIC will

do better than BIC in terms of estimation error because BIC is less likely to choose a rich

enough model to approximate the truth.

Furthermore, in all-subsets approaches with many predictors, there are so many models

to evaluate (often more than the number of subjects available) that it is infeasible to claim

that the best subset for the sample is the best for the population, even supposing such a

unique best subset exists (see Burnham & Anderson, 2002; Chatfield, 1995; Zucchini, 2000).

Therefore, ICs are sometimes used in assigning weights in a model averaging approach rather

than in choosing a single best model (see Burnham & Anderson, 2002; Claeskens & Hjort,

2008). Subset selection techniques can be useful when the number of predictors is large and

little prior information exists, but they have been criticized in the social sciences due to their

automaticity and blindness to theoretical interpretability. Where theoretical information is

available, it might be better to consider only a relatively few models considered meaningful,

interpretable and credible (see Burnham & Anderson, 2002; Thompson, 1995).

To again explore the similarities and differences between the ICs, we consider a multi-

ple linear regression simulation case study. To create the simulated datasets, we returned

to Harman’s example. We considered the problem of predicting the Arithmetic Problems

score from ten other scores in a regression (General Information, Paragraph Comprehension,

Word Classification, Word Meaning, Addition, Code, Counting Dots, Deduction, Problem

Reasoning, Series Completion).

Under the covariance matrix provided by Harman’s dataset, the regression coefficients for

predicting Arithmetic Problems from the other ten variables of interest (an intercept-only
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model was assumed because the scores were all standardized) were approximately -0.0226,

0.1532, 0.0053, 0.1183, 0.3542, 0.0537, 0.0912, 0.0650, 0.0985, 0.0947. The regression co-

efficients for predicting Arithmetic Problems from only the two best predictors, Paragraph

Comprehension and Addition, were 0.3392 and 0.4621. We thus constructed two scenarios

for simulating datasets. In the “diffuse true model” scenario, the ten predictors are assumed

to be normally distributed with mean 0 and have the same population covariance as the

observed covariance in the dataset. The response is assumed to be normal, with a mean gen-

erated under the assumption that population regression coefficients are equal to the sample

regression coefficients for the ten-predictor model for the original data. In the “sparse true

model” scenario, the ten predictors have the same distribution, but the regression coefficients

for the response are all 0 except Paragraph Comprehension at 0.3392 and Addition at 0.4621.

Thus in the first scenario, there are many small but nonzero β values, so sensitivity is impor-

tant. In the second, each β is either large or zero, so sensitivity is less vital and specificity

is rewarded. In each scenario, the assumed unconditional population variance for each of

the predictors was 1. The error variance for the response, conditional upon the predictors,

was chosen at each replication so that the total sample variance of y was 1. For each of the

two scenarios, and for each of n = 50, 100, 150, 200, 300, 400, ..., 1500, we simulated 2000

datasets. With 10 candidate predictors, there were 210 = 1024 possible subsets. For each of

these subsets, a regression model was fit to each dataset and evaluated on AIC, BIC, ABIC,

CAIC and AICc. (AIC3 was not used, since it seems to be primarily discussed for mixture

models.) Also, for each selected model, its prediction performance (in terms of square root of

mean squared error of prediction) in a sample of 10000 new cases was recorded. The results

are shown in Figure 6.

Under the diffuse scenario, the true data-generating model had 10 predictors, but for

small n all of the methods chose a much smaller subset. The number of predictors which

they allowed into the model increased as n increased, but it was generally higher for AIC than

for BIC and CAIC. ABIC was usually intermediate between AIC and BIC. AICc behaved

almost the same as AIC because the number of predictors available was modest and n was

not very small. Under the sparse scenario, both of the truly nonzero predictors were so

strongly related to the response that even BIC and CAIC usually included them. Thus,

BIC and CAIC generally chose the correct model. Here the relationship which was seen

previously between the MSEs of the AIC-like and BIC-like criteria is surprisingly reversed,

and the more specific criteria are more accurate because they happen to agree with the

special structure of the true coefficients. Which scenario is more realistic is not clear and

might depend on the context and field of study.

We only considered linear regression in this paper. For nonparametric regression, both
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the predictors and the complexity of the relationship of each predictor to the response must

be selected somehow. Irrelevant predictors may be much more harmful in nonparametric

regression because each one may essentially involve fitting many parameters (see Hastie et

al., 2001).

Discussion

Most of the simulations shown here illustrated similar principles. AIC and similar criteria

often risk choosing too large a model, while BIC and similar criteria often risk choosing too

small a model. For small n, the most likely error is underfitting, so the criteria with lower

underfitting rates, such as AIC, often seem better. For larger n, the most likely error is

overfitting, so more parsimonious criteria, such as BIC, often seem better. Unfortunately,

the point at which the n becomes “large” depends on numerous aspects of the situation. In

simulations, the relative performance of the ICs at a given n depended on the nature of the

“true model” (the distribution from which the data came). This finding is unhelpful for real

data, where the truth is unknown. It may be more helpful to think about which aspects of

performance (e.g. sensitivity or specificity) are most important in a given situation.

Our simulations were simplistic in some ways. We assumed there was a true model size

for which the model assumptions fit exactly. Underfitting and overfitting could be defined as

underestimating and overestimating the true number of classes or factors. For observed data

for which models are only approximations to reality, more care is required in considering

what it means for a model to be too small, correct, or too large (Burnham & Anderson,

2002, p. 32) Performance can be expressed in terms of a quantitative criterion such as MSE,

avoiding the use of a “correct” size, but this may favor AIC-like over BIC-like criteria.

There is no obvious conclusion about whether or when to use ICs, instead of some other

approach. Kadane and Lazar (2004) suggested that ICs might be used to “deselect” very

poor models (p. 279), leaving a few good ones for further study, rather than indicating a

single best model. One could use the ICs to suggest a range of model sizes to consider; for

example, one could use the BIC-preferred model as a minimum size and the AIC-preferred

model as a maximum, and make further choices based on other kinds of fit criteria, on theory,

or on subjective inspection of the results (Collins & Lanza 2010). If BIC indicates that a

model is too small, it may well be too small (or else fit poorly for some other reason). If

AIC indicates that a model is too large, it may well be too large for the data to warrant.

Beyond this, theory and judgment are needed.
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Figure 6. Average number of variables selected and root mean squared prediction error of the
information criteria in the multiple regression example. “DGM” denotes data-generating model
(simulated true model).
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