Description

Latent class modeling refers to a group of techniques for identifying unobservable, or latent, subgroups within a population. Researchers have developed and expanded methods like latent class analysis (LCA) and latent transition analysis (LTA) over the last two decades. Our current research focuses on expanding methods to include latent class variables in larger models of complex developmental processes. Latent class analysis (LCA) identifies unobservable subgroups within a population. We work to expand LCA models to allow scientists to better understand the impact of exposure to patterns of multiple risks, as well as the antecedents and consequences of complex behaviors, so that interventions can be tailored to target the subgroups that will benefit most. Latent transition analysis (LTA) is a related method that allows scientists to estimate movement between subgroups over time.

LCA example

LCA Introductory Example: Profiles of Teen Sex and Drug Use

In this example, LCA identifies five subgroups of teenagers based on their substance use and sexual behaviors. The latent variable “youth risk behavior” is measured by the observed variables “sex,” “drinking,” “smoking,” and “other drugs.” This analysis allows us to identify complex behavior patterns and variables that predict high-risk behavior patterns, as well as identify subgroups of youth who are at-risk for negative health consequences. With this information, scientists can develop interventions that target individuals with the greatest need.

Read more here.

Resources

There are a variety of resources available to help you learn more about LCA. See our Resources page for the following:

Static Models

LCA: LCA with a grouping variable and without measurement variance

Description This code fits a 4-class, latent-class model for marijuana use and attitudes using 7 binary indicators of the latent class variable. It includes a grouping variable for year, and observations came from 3 different years. Measurement invariance across groups is not imposed resulting in an unrestricted latent class model with multiple groups. Software Downloads Latent Gold Mplus SAS Stata Exercise Exercise 4 This exercise asks you to add a grouping variable for year to a 4-class model for marijuana use and attitudes that uses 7 binary indicators of the latent class variable. It asks you to fit a model...

LPA: Baseline LPA with all continuous indicators and a covariate

Description This code fits a baseline, latent-profile model for the “Big 5” personality traits using 5 continuous indicators of the latent class variable and biological sex as a covariate. Software Downloads Latent Gold Mplus Exercise Exercise 6 This exercise asks you to select and interpret a latent profile model for the “Big 5” personality traits using 5 continuous indicators of the latent class variable as well as add a covariate for biological sex. Then, it asks you to interpret all parameters in the model. Note that, by default in most software packages, the variances of the indicators are restricted to...

LPA: Baseline LPA with all continuous indicators and a grouping variable with measurement invariance

Description This code fits a baseline, latent-profile model for the “Big 5” personality traits using 5 continuous indicators of the latent class variable and biological sex as the grouping variable. It also imposes measurement invariance across the groups. Software Downloads Latent Gold Mplus Exercise Exercise 6 This exercise asks you to select and interpret a latent profile model for the “Big 5” personality traits using 5 continuous indicators of the latent class variable as well as add a grouping variable for biological sex. Then, it asks you to interpret all parameters in the model. Please be sure to impose measurement...

Let’s stay in touch.

We are in this together. Receive an email whenever a new model or resource is added to the Knowledge Base.